Whipping of electrified liquid jets

Josefa Guerrero, Javier Rivero, Venkata R. Gundabala, Miguel Perez-Saborid, Alberto Fernandez-Nieves

Research output: Contribution to journalArticlepeer-review

39 Scopus citations


Weapply an electric field to amoderately conducting liquid surrounded by another coflowing liquid, all inside a glass-based microfluidic device, to study nonaxisymmetric instabilities. Wefind that the bending of the electrified jet results in a steady-state, helicoidal structure with a constant opening angle. Remarkably, the characteristic phase speed of the helicoidalwave only depends on the charge carried by the jet in the helicoidal region and its stability critically depends on the properties of the coflowing liquid. In fact, the steady-state helical structure becomes chaotic when the longest characteristic time is that of the inner liquid rather than that of the outer coflowing liquid. We also perform a numerical analysis to show that the natural preference of the jet is to adopt the conical helix structure observed experimentally.

Original languageEnglish (US)
Pages (from-to)13763-13767
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number38
StatePublished - Sep 23 2014


  • Charged jets
  • Electro-coflow
  • Electrospinning
  • Instability

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Whipping of electrified liquid jets'. Together they form a unique fingerprint.

Cite this