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ABSTRACT

In this paper, we study how the Pruned Landmark Label-
ing (PPL) algorithm can be parallelized in a scalable fash-
ion, producing the same results as the sequential algorithm.
More specifically, we parallelize using a Vertex-Centric (VC)
computational model on a modern SIMD powered multi-
core architecture. We design a new VC-PLL algorithm that
resolves the apparent mismatch between the inherent se-
quential dependence of the PLL algorithm and the Vertex-
Centric (VC) computing model. Furthermore, we introduce
a novel batch execution model for VC computation and
the BVC-PLL algorithm to reduce the computational ineffi-
ciency in VC-PLL. Quite surprisingly, the theoretical anal-
ysis reveals that under a reasonable assumption, BVC-PLL
has lower computational and memory access costs than PLL
and indicates it may run faster than PLL as a sequential al-
gorithm. We also demonstrate how BVC-PLL algorithm can
be extended to handle directed graphs and weighted graphs
and how it can utilize the hierarchical parallelism on a mod-
ern parallel computing architecture. Extensive experiments
on real-world graphs not only show the sequential BVC-PLL
can run more than two times faster than the original PLL,
but also demonstrates its parallel efficiency and scalability.

1. INTRODUCTION
Computing the shortest path distance between any two

vertices stands out as one of the most fundamental graph op-
erators in querying and analyzing massive graphs, with ap-
plications ranging from transportation systems, social net-
works, software systems, the WWW, and semantic web,
among others. This operation also serves as the basis for
more complex graph analytics and mining operations, such
as graph pattern matching [20, 86], distance join process-
ing [68], and centrality computation [14].

Distance computation on road networks has become a
common service for internet map applications, such as Google
Maps. However, computing shortest path distances over
scale-free complex networks—for example, massive social
and web graphs—remains a challenging problem [7, 38, 58].
To provide the exact distance query result, the 2-hop la-
beling approach [21] has emerged as a major tool. Given a
graph, it aims to assign each vertex v a label L(v) compris-
ing a list of vertices and their distance to v. Subsequently,
given any two vertices, we can only use the label informa-
tion, L(u) and L(v), to recover their exact distance.

Since the seminar work by Cohen [21], numerous efforts
over a ten-year period [70, 18, 37, 19, 2, 29, 69] have

largely failed in making 2-hop labeling practical on real-
world graphs with millions of vertices and edges, until the
discovery of Pruned Landmark Labeling (PLL) [7]. This new
labeling approach adopts a fast greedy process to iteratively
assign each vertex (one vertex at a time according to certain
vertex order) the label of other vertices with respect to a dis-
tance check criterion: a vertex u can be added into a vertex
v’s label L(v) if there are no other prior recorded vertex
h ∈ L(u), such that it can provide equal or shorter distance:
u ∈ L(v) if d(u, v) < d(u, h) + d(h, v) for all h ∈ L(u) and
h ∈ L(v). Here L(u) and L(v) are the partial labels be-
ing constructed before the labeling of vertex u. Once the
labeling process is done, the results are guaranteed to be
minimum as no hops need or can be removed to recover all
the pairwise distance or reachability information.

In the past few years, a number of studies [24, 48] have
further validated and confirmed the scalability of this ap-
proach. As a result, 2-hop has gone from handling small
graphs with thousands of vertices and edges to large graphs
with millions of vertices and edges.
PLL meets Vertex Centric Computation: As modern
computing architectures become increasingly parallel with
more and more powerful GPUs and multicore with SIMD
architectures emerging as over-the-shelf choices for graph
processing/database systems and as the size of real-world
graphs continue to grow bigger, an important question nat-
urally arises: can PLL take full advantage of modern parallel
computing architectures to better handle massive real-world
graphs? Furthermore, since vertex centric (VC) computa-
tion [54, 55] has become the de-facto standard for parallel
graph processing and graph databases, can PLL be paral-
lelized using the vertex centric scheme? As the industry
adoption of graph databases and graph analytics systems is
accelerating, answering these questions is becoming critical.

However, the marriage between PLL and VC seems to be
quite a mismatch: the original PLL algorithm is inherently
sequential; i.e., the algorithm operates one vertex at a time
to label the entire graph, and the labeling of a vertex de-
pends on the partial labeling results from earlier processed
vertices. Not only that, it has also been claimed that PLL
does not fit into a VC model [62].
Parallel PLL: Given the strong task dependency existing
within a single vertex labeling process and across labeling
vertices, all existing attempts on parallelization rely on the
computational flow of the sequential PLL. The original PLL
paper [7] has suggested to simply parallelize the BFS label-
ing process of each vertex instead of dealing with inter-vertex
labeling dependency. Clearly, without the inter-vertex label-
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ing parallelization, the parallelism is quite limited. The two
recent attempts [27, 62] treat each vertex labeling process
as a single task, and allow multiple vertices to simultane-
ously traverse and label other vertices sequentially following
the original PLL logic. Thus, the full benefits of PLL across
the labeling order of vertices cannot be maintained and they
cannot produce the same compact label as the original PLL.
Our Contributions: In this paper, we study how PLL
can be effectively parallelized (and more specifically, under
a Vertex-Centric (VC) computational model) using a mod-
ern SIMD powered multi-core architecture. Specifically, we
study the following research problems and make several in-
teresting discoveries along the way:
1. Parallel PLL Algorithm (Section 3): To solve the
mismatch between the inherent sequential/dependence of
PLL algorithms and the VC model, we introduce a new
VC-PLL algorithm that utilizes VC to parallelize PLL and
is guaranteed to produce the same labels as original PLL.
However, the performance of basic VC-PLL turns out to be
quite disappointing compared to PLL (both using a single
thread). The theoretical analysis reveals two key factors in
VC-PLL: message passing and remote memory access during
vertex computation, which both introduce additional costs
compared to the PLL algorithm.
2. Batched Vertex-Centric PLL(Section 4): To deal
with the limitations of VC-PLL, we introduce a novel batch
execution model for vertex-centric computation and a new
BVC-PLL algorithm which largely preserves the same vertex
computation function while reducing the costs of message
passing and remote memory access. Quite surprisingly, an
in-depth and apple-to-apple cost analysis between BVC-PLL
and PLL reveals that under certain reasonable assumptions,
VC-PLL has lower computational costs and memory access
costs than PLL! This indicates BVC-PLL may run faster
than PLL even as a sequential algorithm.
3. Generalization and System Optimization(Section 5):
We discuss how BVC-PLL can be extended to handle di-
rected graphs and weighted graphs. We also study how
BVC-PLL can be supported by modern parallel computing
architecture using the hierarchical parallelism: the coarse
grained thread-level parallelism and the fine-grained data-
level parallelism (i.e., SIMD parallelism or vectorization).
4. Experimental Study(Section 6): Our extensive eval-
uation focuses on the following questions: Can the BVC-
PLL algorithm using only one thread (sequential execution)
run faster than the original PLL? How does BVC-PLL scale
to multiple threads and how is its parallel scalability com-
pared to other parallel algorithms? What are the main fac-
tors affecting its performance? We show that the sequen-
tial BVC-PLL can run more than two times faster than the
original PLL (both using one single thread)! Additionally,
BVC-PLL also has good scalability and obtains close to lin-
ear speedup using 20 threads on several real-world datasets.

2. PRELIMINARIES

2.1 2­Hop Labeling and PLL
The 2-hop labeling algorithm [21], which was pioneered

by Cohen et al. [21], provides an efficient scheme to answer
distance queries. It assigns each vertex u in the (undirected)
graph a label L(u) such that for any two vertices u and
v, their distance can be computed using only their label
information. Formally, we compute L(u) and for each h ∈

L(u), the corresponding distance from u, i.e, d(h, u). It is
also called hub labeling [3] as the label set L(u) for the vertex
u is referred to as the hubs of u. Table 1 illustrates a 2-hop
labeling of the undirected graph G (Figure 1a).

Formally, the shortest path distance query Dis(·, ·) be-
tween any two vertices u and v can be answered as:

Dis(u, v) = min
h∈L(u)∩L(v)

d(u, h) + d(h, v)

Thus, 2-hop labeling can answer distance queries efficiently
by traversing two lists of vertices, with an operation similar
to merge sort.

Given this, 2-hop labeling aims to minimize the total la-
beling size, i.e, if V is the vertex set of graph, the goal is to
minimimize

∑

u∈V
|L(u)|. For a directed graph, each vertex

v is labeled with two labels Lout(u) (the hubs reachable from
u) and Lin(u) (the hubs reaching u) together with their dis-
tances to and from the vertex u, and the objective function
is minimizing

∑

u∈V
|Lout(u)|+ |Lin(u)|.

The traditional approach employs an approximate (greedy)
algorithm based on set-covering, which can produce a dis-
tance oracle with a size no larger than the optimal one by a
logarithmic factor. Conceptually, the ground set consists of
all the reachable vertex pairs, such as {(u, v) : u reaches v}.
Any subset Cv ⊆ S × S (S ⊆ V ) consisting of vertex pairs
(x, y) (x, y ∈ S), which can use v to recover their shortest
path distance, i.e., d(x, y) = d(x, v) + d(v, y), is a candi-
date set. In other words, it suggests the benefits (effects)
by assigning v to the labels of vertices in S. The algorithm
iteratively selects a vertex v to label a subset of vertices S
and cover all the vertex pairs in Cv ⊆ S × S. It continues
until the entire ground set is covered. The criterion of select-
ing optimal v and S is based on the ratio of newly covered
pairs in Cv, i.e., |Cv \P | where P consists of already covered
pairs, and the label cost |S| : |Cv\P |

|S|
. For any given vertex

v, finding the optimal subset of vertices S to be labeled is
equivalent to a densest subgraph problem 1.

The major problem with the set-cover based 2-hop label-
ing approach is its high construction cost: its original com-
plexity is as high as O(n5) [21], which has then be reduced
to O(n3 log n) with the latest optimization techniques [8].
A number of other improvements under the set-cover frame-
work [70, 18, 40, 37, 76, 19, 2, 29, 69] still cannot scale to
the real world graphs that have millions or even billions of
vertices and edges.
Hierarchical Hub Labeling (HHL) and Canonical Hi-
erarchical Hub Labeling (CHHL): An important direc-
tion to make 2-hop labeling feasible and scalable for large
graph is to restrict the choices of labeling (by imposing some
special properties on what can be added into the labels).

Definition 1. (Hierarchical Hub Labeling) Given two dis-
tinct vertices u and v, we say u � v if u ∈ L(v) (u is a hub
of v). A hub (2-hop) labeling is hierarchical if � forms a
partial order.

In fact, any partial order can be extended to a total order
(the order-extension principle) and for a set of vertices V ,
the total order is defined as a bijection π : V → 1, · · · , |V |
(π(v) is the rank of v). Given this, we can say that a label
is hierarchical if there is a total order π which satisfies: u ∈
L(v) then π(u) < π(v) (u ranks higher than v).

Definition 2. (Canonical Hierarchical Hub Labeling) Let
the shortest path vertex set Puv consist of all vertices on
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c Label I, D, and E in G
Figure 1: 2-Hop Labeling and PLL Example

Vertex Labels
A {(A, 0), (D, 1), (I, 2)}
B {(B, 0), (D, 1), (E, 1), (F, 2), (I, 2)}
C {(C, 0), (D, 1), (E, 1), (F, 1), (I, 2), (D, 2)}
D {(D, 0), (I, 1)}
E {(E, 0), (D, 1), (I, 1)}
F {(F, 0), (I, 1)}
G {(G, 0), (F, 1), (L, 1)(I, 2)}
H {(H, 0), (A, 1), (I, 1)}
I {(I, 0)}
J {(J, 0), (I, 1)}
K {(K, 0), (J, 1), (F, 2), (I, 2)}
L {(L, 0), (F, 1), (I, 2)}

Table 1: 2-hop labeling for Graph G

shortest paths between u and v (including u and v). Given
a total order π on V , its canonical hub labeling is defined as
follows: u ∈ L(v) if u has the highest order in Puv, i.e., no
other vertex w in Puv such that π(w) < π(u).

An important implication of canonical hierarchical hub
labeling is that it produces the minimal hierarchical hub la-
beling for a given order [9]. Thus, the optimal HHL problem
can be transformed into two sub-problems: 1) finding the
optimal order that minimizes the label size; 2) computing
the canonical HHL with respect to a given vertex order.

A main breakthrough enabling efficient 2-hop labeling is
the discovery of a simple, yet elegant algorithm called pruned
landmark labeling (PLL) [7]. It computes the canonical
HHL (the second subproblem) for a given vertex order effi-
ciently. Independently, essentially the same style algorithm
was discovered for 2-hop reachability labeling, and is called
distribution labeling [39]. In the past few years, a number of
studies [24, 48] have further validated and confirmed the effi-
ciency and effectiveness of PLL style algorithms for distance
labeling.

Theoretically, the optimal hierarchical hub labeling (HHL)
as well as the original 2-hop labeling have recently been
proved to be NP-hard [9], which implies that the optimal
order sub-problem (the first sub-problem listed above) is
NP-hard as well. A few heuristics, such as the ranking by
degree and betweenness, have been developed for address-
ing this sub-problem [48]. The second sub-problem (labeling
generation) typically dominates the overall labeling compu-
tation and is thus the focus of this study.

2.1.1 Pruned Landmark Labeling (PLL)

Given a total order π of vertices, the pruned landmark
labeling algorithm (PLL) [7] assigns each vertex, based on
the order (π(v1) < π(v2) < · · · < π(vn)), to the labels of
other vertices in the graph following a BFS process. As it
assigns the vertex u with rank π(u) to a vertex v with lower
rank (π(u) < π(v)), it needs to check if u is the highest
rank vertex in the shortest paths between u and v (Puv).
This is the canonical HHL condition and can be done by
determining whether the distance between u and v can be

Algorithm 1 PLL for G = (V,E) with Order π

1: for all u ∈ V {following order π from high to low} do

2: Queue Q = {(u, 0)} {BFS process to use u for labeling}
3: while Q is not empty do
4: (v, d(u, v))← Q.pop()
5: if d(u, v) < minh∈L(u)∩L(v) d(u, h) + d(h, v) then

6: Add (u, d(u, v)) into L(v)
7: For all v′ of v’s neighbor when v′ unvisited by u and

π(u) < π(v′), Add (v′, d(u, v) + 1) to Q
8: end if

9: end while

10: end for

recovered by a certain higher ranking vertex:

d(u, v) < d(v, h) + d(h, u), for all h ∈ L(u) ∩ L(v).

When the condition does not hold, u will be pruned by v
(i.e., is not added into the label of v and will not further
expand from v) during the labeling process.

Algorithm 1 sketches the labeling process for an undi-
rected graph. Note that d(u, v) in the algorithm is the dis-
tance computed by the BFS process, which may not be the
exact distance between u and v (due to the pruning effect).
But the recorded distance in the label (Line 6) is always ex-
act (since it can travel through all the shortest paths starting
from u reaching to v).
Small Revision: In Algorithm 1, which is slightly differ-
ent from the standard BFS process as well as all the previ-
ous PLL descriptions [7, 48] the following change is made.
In Line 7, we only send the current labeling vertex u to the
neighbors of v that have rank lower than v (π(u) < π(v′)) [9].
This can reduce the cost of sending u to v′ if v′ has higher
rank than u. Based on the canonical labeling criterion (Def-
inition 2), u cannot be added to v′ and can be safely pruned
without further expansion from v′.
Running Example: Figures 1b and 1c illustrate the
first three vertices I, E, and D of the PLL labeling process
for graph G (Figure 1a) with its order explicitly denoted in
Figure 1b and Figure 1c. For instance, I is ranked first and
D is ranked second, and so on.

2.2 Vertex Centric Graph Computing Models
The seminal vertex-centric programming model proposed

by the Pregel paper [54] is one of the key driving forces be-
hind recent parallel graph processing system research [32,
46, 57, 73, 51, 43, 82, 71, 79, 59, 53, 35, 23]. It is also
known as the “think-like-a-vertex" model. Though other
models have been used, the simplicity, wide-range applica-
bility, and strong scalability make the vertex-centric model
very appealing as the basic interface and abstraction for par-
allel graph processing [55].

Simply speaking, parallel graph processing is viewed as an
iterative process, where each iteration traverses/processes
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Algorithm 2 Vertex-Centric (Scatter-Gather) Computa-
tion (G=(V,E))
1: Initialize ActiveVertices ⊆ V
2: while ActiveVertices is not empty do

{Scatter Phase:}
3: for all a ∈ ActiveVertices do

4: a.Scatter(a.edges) : {for each edge e = (a, v) of a, send
message(a, e, v) to v}

5: end for
ActiveVertices ← ∅
{Gather Phase:}

6: for all v Received Message do

7: v.Gather(v.messages): {vertex compute using received
messages and update its value}

8: ActiveVertices ← {v : v.value is updated}
9: end for
10: end while

the active vertices – on each vertex, we perform compu-
tations based on the data from incoming and/or outgoing
edges together with the local vertex data, and then update
the values/state associated with the vertex. The vertices
that record a change in their local state become the active
vertices for the next iteration. The parallelization typically
uses the Bulk Synchronous Parallel (BSP) execution [77] and
requires a global synchronization at the end of each itera-
tion. The entire process terminates once the set of active
vertices becomes empty.

In this paper, we will focus on studying how PLL can be
parallelized under the vertex-centric computation. A high
level abstraction of the vertex-centric computation based on
a scatter-gather model [54, 64] is sketched in Algorithm 2.
Each vertex computation is described through two functions:
1) the Scatter function, which describes how each vertex uses
its vertex value and edge value to propagate a message to its
neighbors; and 2) Gather function, which describes how each
vertex computes a new value based on its original value and
all the new messages it received. Each phase can traverse
in parallel their corresponding vertex sets: ActiveVertices,
including the vertices need to send out messages to their
neighbors, for scatter phase, and vertices that have received
a new message to be processed in the scatter phase. When a
vertex is updated with a new value (in the Gather function),
it will be added to the set (ActiveVertices). The process
continues until there are no new active vertices.

Various more advanced parallel graph programming mod-
els are proposed to further refine the vertex-centric model.
This includes the GAS (Gather-Apply-Scatter) [32] and the
push and pull models [60, 73, 13], where the goal is to better
fit the computational and communication patterns of graph
processing. There is also work on generalizing the model to
finer granularity, such as the edge-centric model [64], or to
coarser granularity, such as path or subgraph-centric [63],
and k-step neighborhood [15, 44] models. However, these
models do not necessarily provide more advantage/capability
to support the parallelization of the PLL than the afore-
mentioned vertex centric model. Other recent efforts like
iBFS [50], CUBE [83], and RStream [78] target different
applications or algorithms, and have distinct challenges as-
sociated with them.

3. BASIC VERTEX­CENTRIC ALGORITHM
Recall that the PLL algorithm (Alg. 1) iterates following

the vertex rank (order): at the ith iteration, the vertex u
with rank π(u) = i will be distributed to all other vertices

in the graph using a BFS process. The key condition to
add u into the label of v, L(v), is the distance check for the
canonical labeling criterion: the distance between u and v
cannot be recovered by earlier processed vertices, i.e., ver-
tices with rank higher than u: d(u, v) < d(u, h)+ d(h, v) for
any h ∈ L(v)∩L(u) and π(h) < π(u). Otherwise, u will not
be assigned to v and will not be sent to v’s neighbors for
any further expansion.

The main challenge in parallelizing PLL is that adding
a vertex u of rank π(u) to another vertex v in the BFS
traversal seems to be dependent on the completion of label-
ing of all higher ranked vertices (i.e., any vertex h such that
π(h) < π(u)) in order to apply the distance check. In com-
parison, for parallelization with the vertex-centric model,
we would like to distribute all vertices to their neighbors
simultaneously for vertex labeling. Given this, the need to
distribute all vertices simultaneously and the distance check-
ing condition based on the vertex rank seems to be in conflict
as there is no guarantee that the higher vertices can finish
the distribution before lower rank ones. Indeed, as we men-
tioned earlier, all the existing attempts have all failed to
parallelize inter-vertex labeling while preserving the canon-
ical labeling criterion [7, 27, 62].

3.1 The Algorithm
The main insight to help us solve the aforementioned

dilemma is as follows. Assume we spread all vertices simul-
taneously into the graph (starting by sending each vertex to
their neighbors), and we do the spreading iteration by iter-
ation following the vertex-centric programming model. Let
us consider a vertex u with the rank π(u) that reaches the
vertex v at the j-th iteration: clearly in order to determine
if u should be added to L(v), and spread by v continuously,
we need to verify if there are any other vertices, say w, with
higher ranks than u (π(w) < π(u)), which can produce an
equal or shorter distance, i.e., d(u, v) ≥ d(u,w) + d(w, v).
Note, our key insight is that if such vertex w exists for the
testing, then, it must be able to reach both u and v within
the j-th iteration (d(u, v) steps).

In retrospect, the distance check condition for canonical
labeling criterion requires not only the labeling of higher
ranked vertices h to be completed before the distance check
between u and v, but also their distances d(u, h) and d(h, v)
to be smaller than d(u, v). The latter condition is the key
for utilizing a VC model for PLL, and provides a natural
match of the vertex spreading process at the heart of VC
computation to the center mechanism of the canonical label-
ing in PLL: If we follow a basic label spreading process in
VC, then, we can in parallel prune (or accept) vertex labels
at any vertex using the distance check for canonical labeling
in PLL.
Algorithm Description: Algorithm 3 sketches the main
process of performing PLL based on the vertex-centric com-
putation model (Algorithm 2). In the Initialization phase,
all vertices are active initially (ActiveV ertices = V ). For
each vertex v, L(v) records the partial label and δL(v) records
the new label being generated at each iteration. Initially,
both labels of v records itself and distance 0 (any vertex
reaches itself in zero steps). The main computation alter-
nates between the Scatter phase and Gather phase and will
continue until no new active vertices exist (Lines 2 to 17):
1) Scatter phase (Lines 3 to 7, also referred to as the
push model): all active vertices with new labels perform

4



Algorithm 3 VC-PLL for G = (V,E) with Order π

{Init.: (L(v): label; δL(v): new label from each iteration)}
1: ActiveV ertices← V ;∀v ∈ V, δL(v)← {(v, 0)}, L(v)← δL(v)
2: while ActiveV ertices 6= ∅ do

{Scatter Phase:}
3: for all a ∈ ActiveVertices do

a.Scatter(a.edges):
4: for all (a, v) ∈ a.edges do

5: for all (u, d(u, a)) ∈ δL(a), when π(u) < π(v) ∧ u /∈ L(v):
send (u, d(u, a) + 1) to v.messages

6: end for

7: end for

ActiveVertices← ∅
{Gather Phase:}

8: for all v ∈ V : v.messages 6= ∅{Received Message} do

v.Gather(v.messages):
9: δL(v)← ∅
10: for all unique (u, d(u, v)) ∈ v.messages do

11: if d(u, v) < minh∈L(u)∩L(v) d(u, h) + d(h, v) then

12: Add (u, d(u, v)) to δL(v)
13: end if

14: end for

15: δL(v) 6= ∅: L(v)← L(v) ∪ δL(v); Add v to ActiveVertices
16: end for

17: end while

a vertex Scatter function (Lines 4 to 6): each sends their
new vertex labels with the updated distance: (u, d(u, v)) ∈
δL(u)→ (u, d(u, v) + 1) to all their neighbors (Line 5) with
two conditions: the rank of vertex u needs to higher than v
(otherwise, it will be pruned) and it has never been added
to the label of v.
2) Gather phase (Line 8-16): all vertices that receive a
new message (v.messages 6= ∅) perform a vertex Gather
function (Lines 9-15): For a vertex v, it traverses all its re-
ceived messages (distance label from its neighbors), and for
each unique vertex (u, d(u, v)) across the set of messages, it
confirms the distance check for the canonical labeling crite-
rion: for a distance label message (u, d(u, v)), d(u, v) must
be smaller than the distances via any existing labels (L), i.e.,
d(u, v) < minh∈L(u)∩L(v) d(u, h) + d(h, v) (Line 11). If this
true, it will be added into δL(v). Once δL(v) is computed
and it is not empty, we will add it into L(v) and add v to Ac-
tiveVertices (Line 15). Note that we need to identify unique
vertices in the step above, because two neighbors may send
the same vertex u.
Running Example: Figures 2a illustrates the iteration of
label spreading, where the labels in the graph record newly
generated labels δL for all vertices. At each iteration, L(v)
is simply the union of all δL(v) from all earlier iterations.

3.2 Theoretical Properties
Correctness: Theorem 1 proves that VC-PLL produces a
canonical hierarchical labeling and therefore also generates
the minimum labeling size given a vertex order. In other
words, VC-PLL produces the same label as the original PLL.

Theorem 1. VC-PLL (Algorithm 3) produces the canonical
hierarchical hub labeling given a vertex order π.

Proof Sketch: Recall the shortest path vertex set Puv

consists of all vertices on shortest paths between u and v
(including u and v). Then, we need to prove u ∈ L(v) iff u
has the highest order in Puv (Definition 2).

First (→), we can see that if u ∈ L(v), then we cannot
find another vertex w with rank higher than u, such that
d(u, v) ≥ d(u,w)+d(w, v). Thus, u must have highest order
in Puv. If not, assume we have another vertex w 6= u that
has the highest rank in Puv. Then, based on our algorithm,
w will be the highest ranked in Pwu and Pwv . Thus, w can

always reach u and v before u reaches v (Figure 3) and it is
in Lu and Lv when u reaches v.

!

"

#

$

Figure 3

Second
(←),
as-
sum-
ing
u
has
the
high-
est
or-
der
Puv, then, based on the same argument, it can definitely go
through a shortest path from u to v using Algorithm 3 and
if it reaches v, no other vertices in Lv (and Lu) can prune
it. ✷

The following corollary can be immediately obtained.

Corollary 1. In VC-PLL, when a distance label (u, d(u, v))
is added into δL(v), d(u, v) is the exact shortest path dis-
tance between u and v, and u has the highest rank in Puv.
Further, at any time L(v) ⊆ L(v), where L(v) is the final
complete label of v.

Tree Width and Time Complexity Following the ap-
proach in PLL [7], we can obtain a theoretical upper-bound
of VC-PLL’s time complexity.

Theorem 2. Assuming graph G with a tree-decomposition [1]
of tree-width w, then there is a vertex order π, in which the
VC-PLL takes O(w|E| log |V | + w2|V |(log |V |)2) time (the
same as that of PLL [7]).

Proof is omitted due to space limitation.

3.3 Limitations and Benefits of VC­PLL
We note that even though Theorem 2 provides a theoreti-

cal evidence on time complexity, it does not provide a direct
comparison of the computational and memory access costs
between these two algorithms, PLL and VC-PLL, for a given
vertex order. In the following, we will do an in-depth com-
parison between VC-PLL and PLL, and identify the main
performance bottleneck and potential benefits introduced in
VC-PLL. Since the cost of generating (sending) distance la-
bels and distance check dominates the total computation
(similar in the original PLL [7]), we will primarily focus on
these two factors for computational costs. In addition, we
will compare the memory access of the underlying graph G
between them.
Additional Cost of Distance Label Generation: For a
given vertex u, PLL will send it to a vertex v only once. In
BFS, PLL will flag v after one distance label (u, d(u, v)) is
passed through (Line 7 in Algorithm 1 is sequentially exe-
cuted). But VC-PLL can send multiple (u, d(u, v)) messages
to the same v at two consecutive iterations.

Lemma 1. Given vertex u and vertex v, a distance label (u :
d(u, v)) may reach v at exactly two possible and consecutive
iterations: Let a be a neighbor of v, and u ∈ L(a) (u is the
highest rank vertex in Pua), then it reaches v at d(u, a) +
1 iteration, which is either: 1) equal to the shortest path
distance between u and v, and u may or may not be added
to L(v); or 2) equal to d(u, v) + 1, i.e., the path from u to a
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Figure 2: A VC-PLL Running Example

to v is one step longer than the shortest path between u and
v, and u will be pruned.

Please refer to Appendix for proof.
In addition, at each of these two iterations, if u has not

been or is not in the label of v, then different neighbors of
v may send the same (u, d(u, v)) messages to v.
Additional Cost of Distance Check:

Lemma 2. The set consisting of all pairs (u, v) for distance
checks is the same in PLL and VC-PLL.

Please see Appendix for proof.
However, the number of distance checks in VC-PLL can

be higher than PLL, as a vertex u can be sent to v in two
consecutive iterations in VC-PLL.

The computational cost of distance check

d(u, v) < min
h∈L(u)∩L(v)

d(u, h) + d(h, v)

in VC-PLL is also higher than that in PLL. In VC-PLL, the
cost is O(|L(u)|+ |L(v)|), where L(u) and L(v) are (partial)
labels of u and v at the time of distance check for d(u, v).
Assuming L(u) and L(v) are not sorted, we can first map
L(u) into an array or hash-table, and then check all the
vertices in L(v) against the above data structure. In PLL [7],
since we process vertex u one at a time, and when we try
to process u, its label L(u) is already computed. Thus, we
can first map L(u) to an array only once at the beginning
of the BFS iteration. Thus, the cost of O(|L(u)|) can be
practically saved for each distance check; thus the distance
check for PLL is only O(|L(v)|). For VC-PLL, we cannot
do this directly as it is prohibitively expensive to map every
L(u) to an array or hash-table at the same time.

To summarize, VC-PLL introduces redundant distance la-
beling messages, which may also lead to redundant distance
checks d(u, v). Furthermore, individual distance checks in
PLL can be much faster due to the reuse of L(u) in an ar-
ray or hash-table representation. In fact, these performance
issues seems to challenge the capabilities of Vertex Centric
(VC) computational in supporting: 1) effective message fil-
tering and communication and 2) efficient remote (global)
memory access.
Reduced Memory Access Cost for Graph Topology:
A potential benefit of VC-PLL is that it can help reduce the
total memory access for the graph topology compared with
PLL. Specifically, this is the total number of edge access
in the graph (Line 7 in PLL and Line 4 in VC-PLL) for
propagating distance messages: 1) For PLL, for each new
vertex label message, an edge access (v, v′) is performed for
adding (v′, d(u, v′) + 1) to the queue Q – thus, the number
of total edge accesses is equivalent to the number of total
distance labeling messages. 2) For VC-PLL, for vertex a, all
its new potential labels at an iteration δL(a) are filtered and
grouped together for one edge access (a, v). Thus, VC-PLL

should have less total memory access cost for the edges in
graph than PLL (assuming they propagate similar number
of labeling messages).

Also, in terms of an upper-bound estimation, following
the assumption in Theorem 2, there is a vertex order which
has O(w log |V ||E|) complexity for the edge cost in PLL (w
is the tree-width of G), whereas VC-PLL is bounded by
O(D|E|), where D is the diameter of the graph. In the
real-world graphs, the diameter of a graph is typically much
smaller than its tree-width w [5]. Finally, we note such
memory access benefits to be similar to “frontier sharing” in
iBFS [50], though the latter is not based on vertex-centric
computation.
Sequential Performance Comparison: We implemented
Alg. 3 (VC-PLL) and tested its performance on the DBLP

graph (Section 6) against PLL using a single thread. We
found that it has poor performance with a total execution
time of 13, 583 seconds compared to less than 100 seconds
for PLL! It does not fare well against PLL in other graphs ei-
ther. Basic performance analysis shows that the additional
computational costs significantly outweigh the benefits of
memory access cost reduction.

Now, the question we face is: can VC-PLL overcome its
limitations and reduce those additional costs (message pass-
ing and remote memory access)? In the next Section, we
will discuss how we can extend the basic VC model to help
achieve this and show that the new VC-PLL can be even
faster than PLL sequentially – as it has less computational
as well as memory access costs.

4. BATCHED VERTEX­CENTRIC ALG.
Though VC-PLL can be described in a natural Vertex-

Centric computational scheme, it also demonstrates certain
limitations of the original vertex-centric model assumptions:
1) Typically, the vertex value (and message) is fixed in VC,
whereas in VC-PLL, each vertex value (and message) is a
continuously growing list (or set); 2) In the Gather function,
the computation needs remote memory access for checking
distance conditions (Line 11 in Algorithm 3): in most cases,
u is not a neighbor of v, and when we use L(u) for distance
checks, the memory access is remote with respect to vertex
v. Indeed, the additional computational costs of VC-PLL
compared with PLL (Subsection 3.3) can be traced back to
these limitations.

4.1 Batched Vertex­Centric Computation
To deal with the performance inefficiency of VC-PLL and

the limitations of the vertex centric computation model, we
introduce a batched strategy for the standard VC compu-
tation. Batches are processed in sequence with the vertices
within each batch being processed using the vertex centric
computation. The batched strategy naturally introduces
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Algorithm 4 BVC-PLL for G = (V,E) with Order π

{Init.: (L(v): label; δL(v): new label from each iteration)}
1: ∀v ∈ V, L(v)← ∅, C(v)← ∅
2: Split V into equal-size batches: B1, B2, · · · BT where Bi include

the vertices with rank (i− 1)× |V |/T + 1 to i× |V |/T
3: for all Bi : i = 1 to T {Labeling in Batch} do

4: ActiveV ertices ← Bi;∀u ∈ Bi, δL(u) ← {(u, 0)}, L(u) ←
L(u) ∪ δL(u), and map L(u) to Hashtable H(u)

5: while ActiveV ertices 6= ∅ do

{Scatter Phase:}
6: for all a ∈ ActiveVertices do

a.Scatter(a.edges):
7: for all (a, v) ∈ a.edges do

8: for all (u, d(u, a)) ∈ δL(a), when π(u) < π(v) ∧ u /∈
C(v): flag u in C(v) and send (u, d(u, a) + 1) to v.messages

9: end for

10: end for

ActiveVertices← ∅
{Gather Phase:}

11: for all v ∈ V : v.messages 6= ∅ {Received Messages} do

v.Gather(v.messages):
12: δL(v)← ∅
13: for all (u, d(u, v)) ∈ v.messages do

14: if d(u, v) < minh∈L(u)∩L(v) d(u, h) + d(h, v) then

15: Add (u, d(u, v)) to δL(v)
16: end if

17: end for

18: δL(v) 6= ∅: L(v)← L(v)∪ δL(v); Add v to ActiveVertices
19: If v ∈ Bi: Add δL(v) to H(v)
20: end for

21: end while

22: ∀v ∈ V,C(v)← ∅
23: end for

mechanisms to help handle: 1) (continuously increasing) size
of vertex value and redundant message passing, and 2) re-
mote vertex memory access.
Using Bit Operation for Efficient Message Passing
and Filtering: In each batch processing step, an active ver-
tex only processes up to batch_size unique labels. Based
on this important observation, we can use a compact bit-
vector data structure called candidate bit-vector for efficient
message filtering. The basic idea is as follows. Each ac-
tive vertex maintains a candidate bit-vector with the length
of batch_size bits, each bit corresponding to a vertex in
the batch (e.g., if the batch_size is 1K, such candidate bit-
vector is only 128 bytes). If a vertex u in the current batch
is sent to a vertex v, then its corresponding bit in the can-
didate bit-vector of v is set. Note that the use of bit-vectors
also allows atomic compare-and-swap operation in the shared
memory setting. Note that without batch processing, we
have to consider doing an expensive list merge for handling
message passing and aggregation (as the scatter and gather
functions in VC-PLL for distance label messaging and pro-
cessing, respectively).
Improving Data Locality for Remote Vertex Mem-
ory Access: Simply speaking, only the vertices in the cur-
rent processing batch can be accessed remotely during the
vertex-centric computation. Because the number of vertices
in each processing batch is limited, we can use a compact
data structure such as an array or hash-table to store their
labels for efficient O(1) access (similar to what is done in
PLL for each processed vertex in distance checks).

4.2 BVC­PLL Algorithm
Algorithm 4 sketches the batched Vertex-Centric algo-

rithm for PLL, referred to as BVC-PLL. Specifically, here,
the batches of the vertices are formed according to the rank
of each vertex (Line 2). The earlier processed batch consists
of the vertices with higher ranks (Line 3). BVC-PLL labels
vertices one batch at a time and for assigning the labels in

each batch, the vertex centric computation in VC-PLL is
followed (Lines 5-21) – more specifically, the Scatter Phase
and Scatter function, Gather Phase and Gather function is
preserved with only minor revisions for dealing with message
passing and remote memory access.

Each vertex v is associated with a candidate-bit vector
C(v). Its length is equal to the batch size. It will be ini-
tialized for each batch (Lines 1 and 22). During the Scatter
phase, for any vertex a to send a message (u, d(u, a) + 1) to
its neighbor v, it will check if u is sent to v before (u /∈ C(v),
Line 8). This corresponds to the unvisited flag in the original
PLL. Due to the atomic compare-and-swap operation, it can
guarantee only one message from u is being sent to v and
thus help resolve the redundant distance labeling generation
problem (in Subsection 3.3).

Each vertex u in the batch Bi will map its existing label
L(u) to a hash-table (or array) H(u) at the beginning of
vertex-centric computation (Line 4). Since the new label of
u may be generated during the labeling process, we will map
the new label δL(v) to H(v) when the update is available
(Line 19). Given this, the distance check (in Line 14) only
needs to go through L(v), and thus has the same distance
check cost as the original PLL (Subsection 3.3).
Correctness: It is easy to see that BVC-PLL (Algorithm 4)
produces the canonical hierarchical hub labeling given a ver-
tex order π: the canonical labeling criterion (u ∈ L(v) if u
has the highest rank in Puv) is maintained as BVC-PLL can
assign u to L(v) at u’s batch correctly (Theorem 1) following
the batch processing order.

Another interesting property is that when the batch size
reduces to one, i.e., when we process one vertex at a time,
then BVC-PLL behaves exactly the same as the original
PLL [7].

Finally, we note that introducing and using bit-vector
C(v) for each vertex v and H(u) for each processing batch
vertex u does not introduce additional time complexity com-
pared with PLL. PLL uses only one bit for each vertex v as
the visited flag and one H(u) for distance check, whereas
BVC-PLL simply utilizes a group of them at the same time.
Thus, the time complexity results of Theorem 2 hold for
BVC-PLL as well.

4.3 Detailed Computational Cost Comparison
In the following, we provide an apple-to-apple computa-

tional cost analysis between BVC-PLL and PLL. Following
Subsection 3.3, we will focus on the cost of generating (send-
ing) distance labels and distance checks.
Cost of Distance Label Generation: Since in BVC-PLL,
each vertex u can be sent to v exactly once, together with
Lemma 2 (the same set of u reaches v), we thus observe:

Lemma 3. The time complexity of sending vertex label mes-
sages (u, d(u, v)) along the edges in graph G given an order
π, is the same for PLL and BVC-PLL.

Following Lemma 3, we obtain the following corollary.

Corollary 2. The total number of distance checks (applying
canonical labeling criterion) being invoked in PLL (Line 5
in Algorithm 1) is the same as those being invoked in BVC-
PLL (Line 14 in Algorithm 4).

This is because the number of distance checks is equivalent
to the total number of generated distance label message:
∑

u∈V |reach(u)| (following the algorithm logic).
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Cost of Distance Check: Now, the cost of the same dis-
tance check on d(u, v): d(u, v) < minh∈L(u)∩L(v) d(u, h) +
d(h, v), in PLL and BVC-PLL, is O(|L(v)|). However, L(v)
are different for PLL and BVC-PLL: In PLL, when u reaches
v, L(v) consists of all vertex labels which have higher rank
than u; In BVC-PLL, assuming u in batch Bi, L(v) consists
of all the vertex labels in all the batches before Bi (those are
the same as those in PLL) and the vertices in the current
batch which are within the distance of d(u, v).

Given this, let us focus on only those vertices being added
at batch Bi for L(v), and denote it as Li(v). Next, we break
the distance check cost on |Li(v)| into two categories: 1) the
positive distance check which will confirm the vertex u and
can add it into the corresponding label of v; 2) the negative
distance check will return false on the distance check and
thus prune the vertex u.

Theorem 3. (Positive Distance Check) The time complex-
ity of all positive distance checks in BVC-PLL is lower than
or equal to that of PLL.

Proof Sketch: Let us consider any batch Bi. For the
positive cases of distance check d(u, v) here, given a vertex v
and u, u will always be added to the label of v. For PLL, for
a vertex v, let its complete Li(v) consists of u1, u2, · · · , un

∈ Bi, where n = |Li(v)| and π(u1) < π(u2) · · · < π(un).
Then the total cost of distance check with respect to |Li(v)|
is simply 0 + 1 + · · ·+ n− 1 = n(n− 1)/2,
because in PLL, when ui arrives, Li(v) already consists of
partial labels {u1, · · · , ui−1}. For BVC-PLL, for a vertex
v, we note that its distance label in Bi is arriving in group
according to their distances. Let g1, g2, · · · gk be the groups
ordered by arriving (as well as distance), i.e., given any two
vertices x, y ∈ gi, d(x, v) = d(y, v), and their distance is
smaller than those in gi+1. Note that for any vertex u ∈ gi,
we only utilize Li(v) = g1∪· · ·∪gi−1 for distance check (See
Lines 11−15 in Algorithm 3, Li(v) will be updated until all
the distance checks in a batch gi are done). Let ni = |gi|

and n =
∑k

i=1 ni, making the total cost of distance checks
of vertex v with respect to |Li(v)| in BVC-PLL to be

0 + n1 × n2 + (n1 + n2)× n3 + · · ·+ (

k−1
∑

i=1

ni)× nk

= (n− n1)n1 + (n− (n1 + n2))n2 + · · ·+ (n−
k−1
∑

i=1

nk−1)

= n(n− 1)/2−
k

∑

i=1

ni(ni − 1)/2.✷

Figure 4 illustrates the key idea in the proof of Theorem 3.
Assuming 9 vertices a, b, · · · , i in one batch being added into
L(v) in PLL labeling, its total distance check cost is 36 no
matter which order they are received in (visualized as the
area under the diagonal stairs). Now assuming they arrive
in three groups as shown in Figure 4(a), then in BVC-PLL,
their total distance check cost is 3 + 3 × 6 = 27, a 25%
reduction compared to PLL.

Theorem 3 essentially shows that BVC-PLL is able to
save the intro-group cross-vertex comparison in each batch.
Basically, if vertices arrive at the same time, they have the
same distance to vertex v and cannot prune one another.

To compare the time complexity difference between PLL
and BVC-PLL for the negative distance check, we introduce

Figure 4: Theorem 3

the following notation: for any vertex x, and one of its vertex
label u (u ∈ Li(x)), we denote < x,u > to be a subset:

{

x ∈

⋃

y∈N(x)

Li(y)\Li(x) : π(u) < π(v) < π(x), d(x, u) > d(v, y)+1
}

Similarly, we define < y, v > for vertex y with its label v,
v ∈ Li(y):

{

u ∈
⋃

x∈N(y)

Li(x)\Li(y) : π(u) < π(v), d(x, u) > d(v, y)+1
}

Theorem 4. (Negative Distance Check) In batch Bi, and on
negative distance check, the time complexity saved by BVC-
PLL compared with PLL is no higher than

O(
∑

x∈V

∑

u∈Li(x)

| < x, u > | −
∑

y∈V

∑

v∈Li(y)

| < y, v > |).

The time complexity saved by PLL compared with BVC-PLL
is no higher than

O(
∑

y∈V

∑

v∈Li(y)

| < y, v > | −
∑

x∈V

∑

u∈Li(x)

| < x, u > |).

Please refer to Appendix for proof.
Theorem 4 does not provide a clear winner on the cost of

negative check. However, from the symmetric expression of
these two qualities, we conjecture they should be close to one
another. In Section 6, we will experimentally confirm this.
In addition, for negative distance check, we typically do not
need to traverse through the entire L(v) set. Indeed, the
bit-parallel mechanism proposed in the original PLL paper
[7] can help provide almost O(1) pruning. Since the number
of negative checks is the same for PLL and BVC-PLL, we
expect their overall cost will be fairly close to each other.
Putting It Together: Assuming that PLL and BVC-PLL
have a similar cost for negative distance checks, theoreti-
cally, BVC-PLL may have smaller computational cost than
that of PLL (due to positive distance check) since they have
the same cost of generating/sending distance labeling! Fur-
thermore, BVC-PLL is guaranteed to have a smaller memory
access cost for graph topology than PLL as it groups mes-
sages together for each edge access. Overall, it seems BVC-
PLL, an unexpected marriage between PLL and VC com-
putation, can run faster than the original PLL sequentially
and can also enjoy the scalability of the VC model! Indeed,
Section 6 shows that it can be more than two times faster
than PLL (both using one thread) on real-world graphs.

5. VARIANTS AND IMPLEMENTATION
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5.1 Generalization
Directed Graphs: For directed graph, each vertex v is
assigned with two labels Lin(v) and Lout(v). VC-PLL and
BVC-PLL can be easily extended to handle directed graphs
by considering these two labels as separate computations.
Specifically, in the Scatter function, the new labels δLin and
δLout will be sent out along the outgoing edges and incom-
ing edges, respectively. In the Gather function, there will
be two message queues: one for candidate vertices in Lin,
and another for those in Lout. The labels generated by this
algorithm will be canonical. The computational complexity
analysis in Subsections 3.3 and 4.3 holds for directed graphs
as well.
Weighted Graphs: The direct application of VC-PLL and
BVC-PLL (by changing d(u, v)+1 to d(u, v)+we where we

is the edge weight) on weighted graphs can produce a 2-
hop labeling; but it may not be a canonical labeling. This
is because unlike unweighted graphs, the iteration on the
vertex-centric model will not be in sync with the distance
between two vertices. For instance, when vertex u reaches v
in two iterations, their distance may be larger than a path
via vertex w with a higher rank, but w may take more than
2 iterations to reach v and u. Given this, we cannot use
the partial label L(u) at an arbitrary iteration to fully de-
termine if vertex v is a true or final label for u anymore.
Thus, adding vertex v into u’s partial label L(u) or δL(u)
(using the partial labels in the weighted graph) may lead to
unnecessary vertices being spread in the networks. To deal
with this problem, at the end of each batch processing (Line
22 in BVC-PLL), we can perform a distance recheck using
only the labels from the batch. Since the hash tables of the
labeling vertices in the batch are still in the memory, this
recheck can be quite efficient.

5.2 Implementation Issues
Hierarchical Parallelism: The BVC-PLL computation
(as shown in Algorithm 4) is inherently parallel at the coarse-
grained thread-level. The computation of each batch uses
vertex-centric processing (line 5 to line 21) that consists of
two parallel phases: (Scatter and Gather), with an implicit
synchronization between them. In each phase, each thread
processes a chunk of active vertices with dynamic scheduling
to achieve load balance.

In addition, as aforementioned, BVC-PLL is able to signif-
icantly increase the data locality for remote vertex memory
access, therefore offering us extra opportunities to better
exploit fine-grained data-level parallelism (i.e., SIMD par-
allelism or vectorization). More specifically, consider the
Gather Phase in Algorithm 4 that involves an intensive la-
bel distance check kernel (line 13 to line 17). BVC-PLL
can vectorize this kernel with the help of advanced SIMD
gather/scatter and mask instructions in the latest AVX512
intrinsic set1.

Moreover, for weighted graphs, the distance recheck op-
eration incurs extra overheads. The hierarchical parallelism
is also applied to address this challenge. In particular, effi-
cient SIMD parallelism significantly reduces the overhead of
distance rechecks.
Integrated Bitmap and Queue: Much temporary data
is generated for both labeling vertices and active vertices

1https://software.intel.com/sites/landingpage/IntrinsicsGuide/

during each batch processing. These steps require a clear-
ance (e.g., Algorithm 4, line 22). The cost of this clearance
is significant as this operation occurs for each batch. Tradi-
tionally, we often use either a bitmap or a queue to handle
the set of active vertices. However, they become inefficient
or insufficient for supporting BVC-PLL. For a bitmap, each
of its cleanings can take O(|V |) where |V | is the total num-
ber of vertices; for a queue, it cannot support efficient checks
for whether a given vertex is active or not. Given this, we
propose a new traversal control data structure by combin-
ing both the bitmap and the queue. The basic idea is that a
bitmap supports fast recording and checking visited vertices
and a queue supports fast finding and clearing the visited
vertices. Each time a vertex is processed, we add it to both
the bitmap and the queue. This approach is different from
the bitmap and queue used in the push and pull strategy
presented in [60, 73, 13] because we use both the bitmap
and queue simultaneously rather than in different stages of
processing.
Bit-parallel Adoption: Similar to PLL [7], bit-parallel is
also adopted to accelerate the distance checking in the im-
plementation of BVC-PLL for unweighted graphs. Its con-
struction is similar to multi-source BFS traversals and can
be easily expressed in the Vertex-Centric computing model.

6. EVALUATION
In this section, we perform a detailed evaluation of BVC-

PLL, focusing on answering the following questions: 1) How
does BVC-PLL algorithm perform against the original PLL
in a sequential setting (single thread; no parallelism)? Specif-
ically, the theoretical analysis indicates it may run faster,
but we conduct experiments to confirm this. 2) How does
BVC-PLL scale as the number of threads increases? 3) The
breakdown of runtime of BVC-PLL, and more specifically,
how does the theoretical cost analysis align with experimen-
tation on real-world graphs, such as positive and negative
distance checks and memory access for graph topology? 4)
How does the weighted extension of BVC-PLL perform and
how does it fare against ParaPLL [62] (the state-of-the-art
parallel weighted PLL algorithm)?

6.1 Experimental Setup
Platform: We perform all the experiments on an Intel Xeon
Gold 6138 CPU. It is a Skylake processor with 20 cores run-
ning at 2.0 GHz supporting efficient 512-bit AVX-512 in-
trinsics, with 27.5 MB L3 cache and 192 GB DDR4 memory
shared among all cores. All code is compiled with an Intel
icc compiler (version 19.0.2.187) with -O3 optimization op-
tion. Hyper-threading is not used to simplify the analysis of
experiment results.
Graph Datasets: The 10 graphs used in our evaluation are
characterized in Table 2. They are from 5 categories (So-
cial, Citation, Communication, Hyperlink, and Computer)
with varied numbers of vertices, edges, degrees, and diam-
eters – GNUTELLA, and WIKITALK are from SNAP2, DBLP,
YOUTUBE, TREC WT10G, SKITTER, CATS-DOGS, and FLICKR are
from KONET3, and HOLLYWOOD and INDOCHINA are from
SuiteSparse Matrix Collection4. Particularly, HOLLYWOOD and
INDOCHINA are large graphs with 100 - 200 M edges. These

2https://snap.stanford.edu/snap/
3http://konect.uni-koblenz.de/
4https://sparse.tamu.edu/
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Graph Category |V | |E| deg. dia.

GNUTELLA Social 63 K 148 K 4.7 11
DBLP Citation 317 K 1 M 7.9 10

WIKITALK Comm. 2.4 M 5 M 2.1 9
YOUTUBE Social 3.2 M 9 M 5.8 31

TREC WT10G Hyperlink 1.6 M 8.0 M 10.1 112
SKITTER Computer 1.7 M 11 M 13.1 31

CATS-DOGS Social 62 K 15 M 50.3 15
FLICKR Social 2.3 M 33 M 28.8 23

HOLLYWOOD Social 1.1 M 114 M 99 9
INDOCHINA Hyperlink 7.4 M 194 M 52 207

Table 2: List of datasets. “deg.” denotes average degree. “dia.”
denotes diameter.

a

Graph |L|
PLL BVC-PLL
LT LT SP

GNUTELLA 477 33 13 2.46
DBLP 214 61 47 1.30

WIKITALK 12 40 32 1.24
YOUTUBE 70 285 249 1.15

TREC WT10G 269 462 323 1.43
SKITTER 138 317 242 1.31

CATS-DOGS 96 117 92 1.28
FLICKR 442 1,624 909 1.79

HOLLYWOOD 2,199 10,743 4,368 2.46
INDOCHINA 442 4,755 3,508 1.36

Table 3: Performance: BVC-PLL vs. PLL

a

LT denotes labeling time (s). |L| denotes average label size for each
vertex. SP denotes speedup. BVC-PLL and PLL has the same label
size. This is the same to Table 5

graphs are all unweighted. To test the performance of our
BVC-PLL on weighted graphs, we randomly assign weights
(from 1 to 7 with a uniform distribution) to their edges.
Since we only evaluate algorithms for undirected graphs, we
have transformed the edges in the directed graphs in Cita-
tion and Hyperlink as undirected edges.
Benchmarks: For the sequential performance comparison
on unweighted graphs, we compare BVC-PLL against the
PLL implementations by the original authors [7], and by
[48]. We found these two implementations provide compara-
ble performance with the former being slightly faster. Given
this, we only report its PLL performance result below. For
the scalability performance comparison on weighted graphs,
we compare the weighted BVC-PLL against the implemen-
tation of ParaPLL [62]. For the vertex order, we adopt the
original and the most popular method where the vertices are
ordered by their vertex degree [7, 48].
Batch Size of BVC-PLL: Throughout the experiments,
we use 1024 as the batch size for unweighted graph and use
512 for weighted graph. In general, we observe the larger
the batch size the better performance if the memory can
afford such batch size. In our experimental platform, we
found those two are the optimal batch size. Due to the
space limitation, we will not report the performance results
with respect to batch size below.

6.2 BVC­PLL vs PLL and Scalability
Table 3 shows the performance comparison between BVC-

PLL as a sequential algorithm and PLL (both using sin-
gle thread and no other parallelism, such as SIMD) on all
graphs. Both algorithms use the same vertex order and pro-
duce the same label size, as expected. Interestingly, the
BVC-PLL algorithm consistently outperforms PLL with the
speedup ranging from 1.15X (YOUTUBE) to 2.46X (GNUTELLA
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Figure 5: The scalability of BVC-PLL (unweighted)

and HOLLYWOOD) with an average speedup 1.58X over PLL.
This observation is consistent with our theoretical analysis
in Subsection 4.3. In the next subsection, we will perform a
more detailed cost breakdown and comparison.

Figure 5 shows the scalability of BVC-PLL on all graphs.
Figure 5a shows its speedup over 1-thread BVC-PLL, while
Figure 5b shows its speedup over the original sequential
PLL. With 20 threads, BVC-PLL can achieve up to 14.71
and 33.11 speedup over its 1-thread version and PLL, re-
spectively, demonstrating good scalability.

In addition, by comparing Figure 5 and the average la-
bel size of each vertex in Table 3, we found that generally,
BVC-PLL scales better as the average label size increasing.
For example, GNUTELLA and HOLLYWOOD with the largest av-
erage label sizes result in the best scalability while WIKITALK

with the smallest results in the worst scalability. The label-
ing size provides a good indication of the total computa-
tional costs (message passing and distance checks) involved
for each vertex. The better scalability of larger labeling sizes
is consistent with the computing scalability of multi-core ar-
chitecture.

6.3 Understanding the Performance
Figure 6a shows the overall running time breakdown on

two graphs: GNUTELLA and TREC WT10G. Due to space
limitation, we only report two – trends are similar in other
graphs. We can see the Gather and the Scatter phases dom-
inate the overall computational costs. In addition, within
gather, the distance check time takes about 60%− 80% and
30%−40% of the gather phase and overall time, respectively.

Table 4 shows the theoretical computational distance
check cost,

∑

L(v), as being defined in Subsection 4.3. We
can see that the total cost of the positive distance checks
from BVC-PLL is strictly smaller than that from PLL (rang-
ing from 1.03 to 2), on average 1.23 times smaller. Also, the
theoretical negative distance check cost is indeed very close
to each other, thus experimentally confirming our conjec-
ture.

Figure 6b shows the total number of edge access for PVC-
PLL and PLL on two graphs: GNUTELLA and TREC
WT10G. We can see that PVC-PLL has 5 and 18 times
reduction for these two graphs! This also confirms our the-
oretical analysis on the reduced memory access for graph
topology. Finally, Figure 7 shows the LLC (last level cache)
miss rate and miss access count for the whole labeling pro-
cess of BVC-PLL and PLL. Again, we can see BVC-PLL has
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Figure 6: Performance Analysis

Graph
PLL BVC-PLL Ratio

pos. neg. pos. neg. pos. neg.
GNUTELLA 22 23 19 24 1.18 0.96

DBLP 46 36 41 38 1.14 0.96
WIKITALK 32 19 16 19 2.00 1.00
YOUTUBE 108 138 80 138 1.35 1.00

TREC WT10G 314 103 300 104 1.05 0.99
SKITTER 260 513 208 508 1.25 1.01

CATS-DOGS 44 244 37 244 1.19 1.00
FLICKR 893 2,003 830 2,028 1.08 0.99

HOLLYWOOD 6,667 38,343 6,455 38,487 1.03 1.00
INDOCHINA 6,265 1,886 5,973 1,899 1.05 0.99

Table 4: The sum of the size of L(v): BVC-PLL vs. PLL. “pos.”
denotes positive case. “neg.” denotes negative case. Unit
(Billion)

consistent lower LLC miss rate and access count than PLL!

6.4 Extension to Weighted Graphs
A similar performance study is conducted between PLL

and BVC-PLL for weighted graphs. To evaluate weighted
BVC-PLL’s sequential performance against PLL, we have
modified the original PLL implementation as suggested in
[7], changing its BFS traversal to Djkstra’s algorithm. We
also extended BVC-PLL as described in Subsection 5.1. Please
notice: both PLL and BVC-PLL are optimized with SIMD
for the weighted version (and for the unweighted version, we
also implemented them with SIMD however without obvious
speedup change).

Table 5 shows the comparison results for 1-thread SIMD
and non-SIMD versions of PLL and BVC-PLL. For all non-
SIMD tests, PLL consistently performs better than BVC-
PLL; while for most SIMD tests, BVC-PLL outperforms
PLL. This is because the weighted BVC-PLL introduces ad-
ditional distance check (due to additional message passing)
and rechecks, which significantly increases the number of in-
structions for BVC-PLL, resulting in degraded performance.
However, SIMD parallelism is a good remedy that can sig-
nificantly reduce the number of instructions. It should be
noted that BVC-PLL is able to effectively exploit SIMD par-
allelism because the data locality has been improved. (See
the performance analysis in last Subsection). In particu-
lar, for SIMD version, BVC-PLL outperforms PLL for 7
out 10 graphs, resulting in 1.14X to 1.92X speedup with an
average of 1.34X. For the slowdown cases, BVC-PLL’s per-
formance is only degraded up to around 10%. Please notice
that our BVC-PLL is able to continue exploring hierarchical
parallelism to further extract the most out of the massive
parallelism of modern processors.

Figure 8 shows the scalability of BVC-PLL on all weighted
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Graph |L|
PLL BVC-PLL

LT-N LT-S LT-N LT-S SP-N SP-S

GNUTELLA 656 52 47 123 37 0.42 1.26
DBLP 387 152 139 293 146 0.52 0.95

WIKITALK 152 350 327 396 171 0.88 1.92
YOUTUBE 147 652 625 763 546 0.85 1.14

TREC WT10G 304 632 579 1,140 662 0.55 0.87
SKITTER 432 1,511 1,467 2,146 921 0.70 1.59

CATS-DOGS 224 527 510 442 347 1.19 1.47
FLICKR 653 3,879 3,826 4,189 2,483 0.93 1.54

HOLLYWOOD2,217 18,707 18,04124,161 10,399 0.77 1.73
INDOCHINA 828 13,940 13,10526,744 14,768 0.52 0.89

Table 5: Weighted Performance: BVC-PLL vs. PLL (Dijk-
stra). “-S” denotes SIMD version. “-N” denotes non-SIMD
version.

graphs, in which, Figure 8a shows its speedup over 1-thread
BVC-PLL while Figure 8b shows its speedup over PLL.
With 20 threads, BVC-PLL can achieve up to 13X and 16X
speedup over its 1-thread version and PLL, demonstrating
good scalability.

Finally, we compare BVC-PLL with the state-of-the-art
ParaPLL, which does weighted parallel PLL. Unfortunately,
it can only run on small graphs (this is consistent on what
being presented in their original paper [62]). In Figure 9
shows the performance comparison of BVC-PLL and Para-
PLL on the graph GNUTELLA (the only graph we are able
to run for ParaPLL, as it throws an error of Segmentation
Fault with the other graphs). For this graph, we can see
that BVC-PLL is in general more than one order of magni-
tude faster than ParaPLL (even for non-SIMD version)!

7. RELATED WORK
Online and Parallel Shortest Path Distance Com-
putation: The standard (single source) shortest path com-
putation method is Dijkstra’s algorithm [26] for weighted
graphs and Breadth-First Search (BFS) traversal for un-
weighted graphs. There have been quite a list of efforts
in designing parallel Dijkstra and BFS algorithms [56, 49,
47]. Particularly, certain latest studies focus on performing
multi-source or concurrent BFS over modern multi-core or
GPU architectures [75, 50]. However, it remains challenging
to answer the shortest path distance using these approaches
due to the large traversal space for large graphs.
Shortest Path Computation on Road Networks: Com-
puting shortest path on road networks has been widely stud-
ied [41, 42, 72, 67, 11, 34, 31, 66, 69, 45, 30, 74, 12, 4, 2, 3,
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6, 58], and has been applied successfully in industry prac-
tice. A more detailed review on this topic can be found
in a recent survey [10]. We note that the effectiveness of
these approaches rely on the essential properties of road
networks, such as the ones that are almost planar, have low
vertex degree, are weighted, are spatial, or have a hierarchi-
cal structure, and they may not apply on scale-free complex
networks, such as social and web graphs [33, 58].
Theoretical Distance Labeling and Hop-based Label-
ing: There have also been several studies on estimating the
distance between any vertices in large (social) networks [52,
22, 33, 84, 85, 61]. These methods fall within the group of
distance-labeling [28], where the goal is to assign each vertex
u a label (for instance, a set of vertices and the distances
from u to each of them) and then estimate the shortest path
distance between two vertices using the assigned labels.

The pioneering 2-hop labeling method by Cohen et al. [21]
provides exact distance labeling on directed graphs. How-
ever, numerous efforts over a ten-year period [70, 18, 37,
19, 2, 29, 69] have largely failed in making 2-hop labeling
practical on large real-world graphs until the discovery of
Pruned Landmark Labeling (PLL) [7]. In the past few years,
a number of studies [24, 48] have further validated and con-
firmed the scalability of this approach. The idea has also
been extended to road networks [6] and out-of-core graph
labeling [36]. Another direction of research involves the use
of tree decomposition for shortest path distance computa-
tion [80], and particularly in utilizing it for hop-based la-

beling [81, 16, 58]. There are also efforts that relax the
distance computation to focus on cases when the distance is
smaller than a certain threshold (useful for querying social
networks) [17, 38].
Others: For related work on vertex-centric computation,
please refer to Subsection 2.2. For recent progress on general
parallel (VC-type) graph algorithms on modern computing
architecture, please refer to [25, 65].

8. CONCLUSION
In this paper, we proposed VC-PLL, which, to the best of

our knowledge, is the first scalable parallelization of Pruned
Landmark Labeling (PLL) that is able to produce the same
result as the sequential method. We have achieved this by
mapping the algorithm to a vertex-centric model. We also
introduced a new batched execution mechanism for VC-PLL
to better support message filtering and remote memory ac-
cess. Based on the new model, we designed the BVC-PLL al-
gorithm, which surprisingly can run faster than the original
PLL as a sequential algorithm (demonstrated through both
theoretical analysis and experimental validation). As far as
we can tell, this is the first VC graph algorithm that can in-
herently run faster than its original counterpart even with-
out parallelism. Our experimental results further demon-
strate the parallel efficiency and scalability of BVC-PLL and
shows its superiority over the most recent Para-PLL algo-
rithms on weighted graphs (using a straightforward exten-
sion of BVC-PLL). In our future work, we plan to further
investigate how to optimize BVC-PLL on weighted graphs
and how to extend it for out-of-core graphs. We also plan to
investigate the possibility of implementing the cost-saving
mechanism in BVC-PLL for other graph algorithms.

APPENDIX
Lemma 1 Proof Sketch: To see this, we first need to prove
that the shortest path distance d(u, a) is smaller than or equal to
d(u, v) + 1, where a and v is the direct neighbor of one another.
By way of contradiction, let us assume d(u, a) ≥ d(u, v) + 2.
Then, let w be the highest rank vertex in Pua, then, we can find
a path from u to w to v to a, which is d(u, v) + 1. This suggests
d(u, a) ≤ d(u, v) + 1. Next, we show u indeed can reach v in two
consecutive iterations. This happens when u reach v via a being
the shortest path between u to v: d(u, v) = d(u, a) + 1; but u is
not the highest rank one in Puv. Thus, u is not added to L(v) in
d(u, v) iteration. Now, assume u reach a′ with d(u, a′) = d(u, v)
and u ∈ L(v′) (added in d(u, v) iteration. If a′ is the neighbor of
v, then u will be sent to v in d(u, v) + 1 iteration as well. ✷

Lemma 2 Proof Sketch: Let reach(u) be the subset of vertices
u reaches. In PLL, it corresponds to all the (u, d(u, v)) messages
added into the Q (Line 7 in Algorithm 1). In VC-PLL, it cor-
responds to all the (u, d(u, v)) messages being sent to vertex v
(Line 5 in Algorithm 3). Thus,

⋃
u∈V {u} × reach(u) is the set

consisting of all pairs (u, v) for distance check. In PLL and VC-
PLL, for a vertex u, it is assigned to the same subset of vertices
(Corollary 1). Also, it will also be sent to the same set of vertices
which do not use u as label. Thus, the set

⋃
u∈V {u} × reach(u)

is the same for both. ✷

Theorem 4 Proof Sketch: To quantify the difference of the
time complexities between two algorithms, we focus on the cases
where one algorithm can save computational cost when the Li(v)
will be different for distance check d(u, v).

For the first case, let us consider vertex x, it has a vertex
u ∈ Li(x). Now, consider any vertex v ∈ Bi reaches vertex x
for distance check and returns negative result. If v can reach x,
it must be a label of neighbor y of x, i.e., v ∈ Li(y), y ∈ N(x),
and v /∈ Li(x) (false distance check). When v reaches x, it has
also lower rank than u but higher than x: π(u) < π(v) < π(x).
Given this, for PLL, u is already in L(x); however, for BVC-PLL,
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v can reach x before u reaches x. Thus, this case will introduce
a gain for BVC-PLL; and such v is characterized and recorded in
set < x, u >.

For the second case, let us consider vertex y, and it has a vertex

v ∈ Li(y). Now, consider any vertex u ∈ Bi reaches vertex y for

distance check and returns negative result. If u can reach y, it

must be a label of neighbor x of y, i.e., u ∈ Li(x), x ∈ N(y), and

u /∈ Li(y) (false distance check). When u reaches y, it has also

higher rank than v: π(u) < π(v). Given this, for BVC-PLL, v

is already in L(y); however, for PLL, u can reach x before v is

added into L(y). Thus, this case will introduce a gain for PLL;

and such u is characterized and recorded in set < y, v >. ✷
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