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A B S T R A C T

We estimate and analyze the time-dependent parameters: transmission rate, symptomatic recovery rate,
immunity rate, infection noise intensities, and the effective reproduction number for the United States
COVID-19 cases for the period 01/22/2020-02/25/2021 using an innovative generalized method of moments
estimation scheme. We assume the disease-dynamic is described by a stochastic susceptible–exposed–infected–
recovered–susceptible (SEIRS) epidemic model, where the infected class is divided into the asymptomatic
infected, and symptomatic infectious classes. Stochasticity appears in the model due to fluctuations in the
disease’s transmission and recovery rates. The disease eradication threshold is derived from the reproduction
number. The estimated parameters are used to model the disease outbreak’s possible trajectories. Our analysis
reveals that current interventions are having positive effects on the transmission and recovery rates. The
analysis is demonstrated using the daily United States COVID-19 infection and recovered cases for the period:
01/22/2020-02/25/2021.
Introduction

Several mathematical models [1–10] have been developed to study
the transmission of the COVID-19 virus caused by the virus species
‘‘severe acute respiratory syndrome coronavirus’’, named SARS-CoV-
2. The virus has caused over thirty million active cases and over 600
million deaths in the United States as of July, 2021. The airborne
transmission occurs by inhaling droplets loaded with SARS-CoV-2 par-
ticles that are expelled by infectious people. According to the United
States Centers for Disease Control and Prevention (CDC),1 the best way
to prevent the disease is to avoid being exposed to the virus. There
are two other novel coronaviruses, namely, ‘‘severe acute respiratory
syndrome coronavirus’’ (SARS-CoV) and the ‘‘Middle East respiratory
syndrome coronavirus’’ (MERS-CoV) that emerged as major global
health threats since 2002, according to Wu et al. [3]. Knowledge about
the transmission of the infectious disease can help control the spread of
the disease. Several vaccinations have been developed to eradicate or
reduce the transmission of the virus. On December 11, 2020, the United
States Food and Drug Administration (FDA) issued an Emergency Use
Authorization (EUA) for the Pfizer-BioNTech Covid-19 vaccine to be
used in the United States. The first dose of the vaccine was administered
on December 14, 2020. This is the first vaccine administered in the

E-mail address: ootunuga@augusta.edu.
1 https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html.
2 https://covid.cdc.gov/covid-data-tracker/#vaccination-trends. reported July, 24, 2021
3 The United States Patent 𝐿𝑎𝑑𝑑𝑒 𝑒𝑡 𝑎𝑙. with U.S. Patent Number 10719578 was approved on July 21, 2020. A one page summary of the Patent can be found

at https://pdfpiw.uspto.gov/.piw?Docid=10719578.

United States. Seven days later, the FDA approved an EUA for the
Moderna COVID-19 vaccine in the United States. The third vaccine,
The Johnson and Johnson (J&J) vaccine, was first issued in the United
States on February 27, 2021. As of July 24, 2021, only 68.7% of adults
in the United States have taken at least one of the three vaccination.
Data reported by CDC2 shows that the daily count of total doses of the
vaccines administered increases in trend from December 13, 2020 to
February, 14, 2021, with a slight decline from February 14 to February
21, and later increases from then to February 25. We study in this work,
by estimating and analyzing epidemiological parameters, the impact of
these vaccines on the number of cases in the United States.

Parameter identification studies conditions under which observa-
tions of a modeled system can be used to identify the value of model
parameters [11–13]. Time-dependent model parameters are difficult
to identify in non-linear epidemic models. The Kalman filtering [14–
16] and the generalized method of moments [17–19] are two well
known estimation procedures for stochastic models. The transmission,
recovery, loss of immunity rates of the Covid-19 virus are expected
to vary with time and depend on many factors such as pneumonia
seasonality, mobility, testing rates, mask use per capital weather [2],
social behavior, strain-specific factors [11], public health interven-
tions [5], etc. These rates are difficult to estimate, and cannot be
vailable online 11 August 2021
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estimated from laboratory experiments or surveys of infected pop-
ulations. In this work, by assuming the transmission of the Covid-
19 virus follows a stochastic susceptible–exposed–infected–recovered–
susceptible stochastic epidemic model, and further dividing the in-
fected class into asymptomatic and symptomatic class, we use the
patented scheme3 called the lagged adapted generalized method of

oments (LLGMM) parameter identification technique [20] to estimate
he time-dependent disease reproduction number, time-dependent dis-
ase transmission, temporary recovery, temporary immunity rates, and
ime-dependent infection noise intensities for the COVID-19 virus. We
emonstrate the LLGMM procedure for the time-dependent parameters
n a stochastic susceptible–exposed–infectious–recovered–susceptible
𝑆𝐸𝐼𝑅𝑆) epidemic model using Covid-19 data for the year 2020.

The paper is organized as follows: The deterministic and corre-
ponding stochastic 𝑆𝐸𝐼𝑅𝑆 models governing the transmission of the

Covid-19 disease are described in Section ‘‘The SEIRS model’’. The
LLGMM scheme is described in Section ‘‘The time varying state and
parameter estimation scheme’’ and it is used to estimate the epi-
demiological time-varying parameters in the stochastic model. The
application of the scheme to 𝑆𝐸𝐼𝑅𝑆 epidemic model for Covid-19 is
discussed in Section ‘‘Case Study: COVID-19’’. The basic reproduction
number and effective reproduction number are also estimated and fitted
in Section ‘‘Case Study: COVID-19’’. The summary of the work done is
discussed in Section ‘‘Discussion and further studies’’.

The SEIRS model

We use a deterministic susceptible, infected but not infectious (ex-
posed), asymptomatic infected, symptomatic infectious, and recovered
model, with compartments denoted by ,  , 1, 2, and , respectively,
to describe the transmission of the Covid-19 disease in the United
States. By exposed, we mean someone who got infected (but not
infectious) by being in close contact with someone who has Covid-19.
A full list of what counts as close contact is provided by the Centers
for Disease Control and Prevention (CDC).4 The 𝑆𝐸𝐼𝑅𝑆 model with
vital rates governing the transmission of the virus is described by the
following deterministic system of nonlinear differential equations:

𝑑 =

(

𝜇 − 𝜷(𝑡)

(

𝜂1 + 2
)


− 𝜇 + 𝜸(𝑡)

)

𝑑𝑡, (𝑡0) = 0,

𝑑 =

(

𝜷(𝑡)

(

𝜂1 + 2
)


− (𝛼 + 𝜇)

)

𝑑𝑡, (𝑡0) = 0,

1 =
(

(1 − 𝑝)𝛼 −
(

𝑟𝐼 + 𝜇
)

1
)

𝑑𝑡, 1(𝑡0) = 10, (1)
𝑑2 =

(

𝛼𝑝 − (𝝂(𝑡) + 𝜇)2
)

𝑑𝑡, 2(𝑡0) = 20,

𝑑 =
(

𝝂(𝑡)2 + 𝑟𝐼1 − (𝜸(𝑡) + 𝜇)
)

𝑑𝑡, (𝑡0) = 0,

where 0 > 0, 0 > 0, 10 > 0, 20 > 0, 0 > 0, and (𝑡), (𝑡),
1(𝑡), 2(𝑡), (𝑡) are the population of susceptible, infected but not
infectious (exposed), asymptomatic, symptomatic infectious, and tem-
porarily immune (temporarily recovered) individuals, respectively, at
time 𝑡 ≥ 𝑡0. Here, 𝜷(𝑡) is the time-dependent transmission or contact rate
in response to public health interventions. We assume every individual
is in one of these compartments at 𝑡0 with  = 𝑆0+𝐸0+10+20+0,
where  is the population size of the United States, so that ++1+
2+ =  for all time 𝑡. The transmission rate, symptomatic recovery
rate, and temporary immune rate 𝜷(𝑡), 𝝂(𝑡), and 𝜸(𝑡), respectively, are
assumed to be a positive, bounded, and continuous function of time
𝑡. The latency and death rates 𝛼 and 𝜇, respectively, are each positive
constants, with 𝛼 being the transition rate from the exposed to infected
class. The parameter 𝑝 ≥ 0 is the fraction of infection cases that are
symptomatic, and 𝑟𝐼 is the asymptomatic recovery rate. The parameter

4 https://www.cdc.gov/coronavirus/2019-ncov/if-you-are-sick/
uarantine.html, accessed 03.07.2021.
2
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Fig. 1. 𝑆𝐸𝐼𝑅𝑆 model schematic.

𝜂 accounts for the infectiousness of asymptomatic individuals relative
to symptomatic. According to the CDC,5 a parameter value of 𝜂 = 50%
means an asymptomatic individual is half as infectious as a symp-
tomatic individual, whereas a parameter value of 100% means that
an asymptomatic individual is just as likely to transmit infection as a
symptomatic individual. See Fig. 1 for a schematic of the SEIRS model
described here.

We assume that the transmission, symptomatic recovery, and tem-
porary immune rates 𝜷(𝑡), 𝝂(𝑡), and 𝜸(𝑡), respectively, of the Covid-19
irus are functions of time and are unknown. We also assume the
symptomatic recovery rate 𝑟𝐼 is unknown. By studying the trajectories
f the number of Covid-19 infection cases in the United States, we
oticed, from the spikes in the trajectory of the number of cases, that
t is influenced by some external noises. These noises can be caused by
any factors such as the rates at which Covid-19 testing is done, vacci-
ation rates, variability in the number of contacts between infected and
usceptible individuals, mask use per capital, social behavior, public
ealth intervention, and so on. Since no much information is known
bout the temporary immune rates 𝜸(𝑡) of the virus, we only assume in

this study that the transmission and recovery rates are influenced by
Gaussian white noise processes causing the rates to fluctuate around
the function 𝛽(𝑡) and 𝜈(𝑡), respectively. As mentioned above, external
fluctuations may be caused by many factors such as public health inter-
ventions and variability in the number of contacts between infected and
susceptible individuals, and such random variations can be modeled by
a white noise. Thus we assume
𝜷(𝑡) = 𝛽(𝑡) + 𝜎1(𝑡)𝜁1(𝑡),
𝝂(𝑡) = 𝜈(𝑡) + 𝜎2(𝑡)𝜁2(𝑡),

(2)

here 𝜁𝑖(𝑡), 𝑖 = 1, 2 are independent Gaussian white noise term with
ean 0 such that 𝜁𝑖(𝑡)𝑑𝑡 = 𝑑𝑊𝑖(𝑡), 𝜎𝑖(𝑡), 𝑖 = 1, 2, are the noise

ntensities for the transmission and symptomatic recovery rates, re-
pectively, 𝑊𝑖(𝑡), 𝑖 = 1, 2, are independent standard Weiner process
efined on a complete filtered probability space (𝛺, , (𝑡)𝑡≥0,P), (𝑡0 )
s measurable and (𝑡)𝑡≥0 is right continuous. We also assume that
0, 0,10,20,0) is 𝑡0 -measurable and independent of 𝑊𝑖(𝑡)−𝑊𝑖(𝑡0),

5 Centers for Disease Control and Prevention, https://www.cdc.gov/
oronavirus/2019-ncov/hcp/planning-scenarios.html, accessed 03.06.2021.

https://www.cdc.gov/coronavirus/2019-ncov/if-you-are-sick/quarantine.html
https://www.cdc.gov/coronavirus/2019-ncov/if-you-are-sick/quarantine.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
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𝑖 = 1, 2. By substituting (2) into (1), the dynamics describing the system
is interpreted using Stratonovich 𝑆𝐸𝐼𝑅𝑆 equation with vital rates and
tochasticity as

𝑑 =
(

𝜇 − 𝛽(𝑡)
(𝜂1 + 2)


− 𝜇 + 𝛾(𝑡)

)

𝑑𝑡

− 𝜎1(𝑡)
(𝜂1 + 2)


◦𝑑𝑊1(𝑡), (𝑡0) = 0,

𝑑 =
(

𝛽(𝑡)
(𝜂1 + 2)


− (𝛼 + 𝜇)

)

𝑑𝑡

+ 𝜎1(𝑡)
(𝜂1 + 2)


◦𝑑𝑊1(𝑡), (𝑡0) = 0,

𝑑1 =
(

𝛼(1 − 𝑝) − (𝑟𝐼 + 𝜇)1
)

𝑑𝑡, 1(𝑡0) = 10,
(3)

𝑑2 =
(

𝛼𝑝 − (𝜈(𝑡) + 𝜇)2
)

𝑑𝑡 − 𝜎2(𝑡)2◦𝑑𝑊2(𝑡), 2(𝑡0) = 20,
𝑑 =

(

𝑟𝐼1 + 𝜈(𝑡)2 − (𝛾(𝑡) + 𝜇)
)

𝑑𝑡 + 𝜎2(𝑡)2◦𝑑𝑊2(𝑡), (𝑡0) = 0.

where ◦ is the Stratonovich integral symbol. We direct readers inter-
ested in a review of stochastic modeling with systems of differential
equations, and the interpretation of stochastic dynamic systems as a
Stratonovich system to the work of Kloeden [21], Ladde [22], and
Méndez et al. [23]. Model (3) performs better than existing SEIRS
deterministic model in the sense that it is able to capture fluctuations
in the number of susceptible, exposed, infections, and recovered cases.
Another advantage the model has over other existing model is the fact
that it captures the trajectories of the susceptible, exposed, infected,
and recovered population well because the transmission, recovery, and
the immunity rates are extracted for each given time rather than as a
constant over time. We convert the population sizes ,  , 1, 2, and
 to percentages using the transformation

𝑆 = ∕ , 𝐸 = ∕ , 𝐼1 = 1∕ , 𝐼2 = 2∕ , 𝑅 = ∕ ,

respectively. Using these transformations, Eq. (3) reduces to

𝑑𝑆 =
(

𝜇 − 𝛽(𝑡)𝑆(𝜂𝐼1 + 𝐼2) − 𝜇𝑆 + 𝛾(𝑡)𝑅
)

𝑑𝑡

− 𝜎1(𝑡)𝑆(𝜂𝐼1 + 𝐼2)◦𝑑𝑊1(𝑡), 𝑆(𝑡0) = 𝑆0,

𝑑𝐸 =
(

𝛽(𝑡)𝑆(𝜂𝐼1 + 𝐼2) − (𝛼 + 𝜇)𝐸
)

𝑑𝑡

+ 𝜎1(𝑡)𝑆(𝜂𝐼1 + 𝐼2)◦𝑑𝑊1(𝑡), 𝐸(𝑡0) = 𝐸0,

𝑑𝐼1 =
(

𝛼(1 − 𝑝)𝐸 − (𝑟𝐼 + 𝜇)𝐼1
)

𝑑𝑡, 𝐼1(𝑡0) = 𝐼10,
(4)

𝑑𝐼2 =
(

𝛼𝑝𝐸 − (𝜈(𝑡) + 𝜇)𝐼2
)

𝑑𝑡 − 𝜎2(𝑡)𝐼2◦𝑑𝑊2(𝑡), 𝐼2(𝑡0) = 𝐼20,

𝑑𝑅 =
(

𝑟𝐼𝐼1 + 𝜈(𝑡)𝐼2 − (𝛾(𝑡) + 𝜇)𝑅
)

𝑑𝑡 + 𝜎2(𝑡)𝐼2◦𝑑𝑊2(𝑡), 𝑅(𝑡0) = 𝑅0.

We convert (4) into Itô stochastic differential equation as

𝑑𝑆 =

(

𝜇 − 𝛽(𝑡)𝑆(𝜂𝐼1 + 𝐼2) − 𝜇𝑆 + 𝛾(𝑡)𝑅 +
𝜎2
1 (𝑡)
2

𝑆(𝜂𝐼1 + 𝐼2)2
)

𝑑𝑡

− 𝜎1(𝑡)𝑆(𝜂𝐼1 + 𝐼2)𝑑𝑊1(𝑡), 𝑆(𝑡0) = 𝑆0,

𝑑𝐸 =

(

𝛽(𝑡)𝑆(𝜂𝐼1 + 𝐼2) − (𝛼 + 𝜇)𝐸 −
𝜎2
1 (𝑡)
2

𝑆(𝜂𝐼1 + 𝐼2)2
)

𝑑𝑡

+ 𝜎1(𝑡)𝑆(𝜂𝐼1 + 𝐼2)𝑑𝑊1(𝑡), 𝐸(𝑡0) = 𝐸0,

𝑑𝐼1 =
(

𝛼(1 − 𝑝)𝐸 − (𝑟𝐼 + 𝜇)𝐼1
)

𝑑𝑡, 𝐼1(𝑡0) = 𝐼10,

(5)

𝑑𝐼2 =

(

𝛼𝑝𝐸 − (𝜈(𝑡) + 𝜇)𝐼2 +
𝜎2
2 (𝑡)
2

𝐼2

)

𝑑𝑡

− 𝜎2(𝑡)𝐼2𝑑𝑊2(𝑡), 𝐼2(𝑡0) = 𝐼20,

𝑑𝑅 =

(

𝑟𝐼𝐼1 + 𝜈(𝑡)𝐼2 − (𝛾(𝑡) + 𝜇)𝑅 −
𝜎2
2 (𝑡)
2

𝐼2

)

𝑑𝑡

+ 𝜎2(𝑡)𝐼2𝑑𝑊2(𝑡), 𝑅(𝑡0) = 𝑅0.

It can be shown, using ideas presented in Mummert and Otunuga [11
that 𝑆𝐸𝐼𝑅𝑆 stochastic differential equation (5) has a unique (up to
equivalence) global solution and the solution will remain within [0, 1]5
3

whenever it starts from there. Hence, the epidemiologically reasonable
region in the SEIRS plane is given by

𝑇 =
{

(𝑆,𝐸, 𝐼1, 𝐼2, 𝑅) | 0 ≤ 𝑆 + 𝐸 + 𝐼1 + 𝐼2 + 𝑅 ≤ 1
}

.

We assume that all model parameter values are known, except
𝛽(𝑡), 𝜈(𝑡), 𝛾(𝑡), 𝑟𝐼 , and 𝜎𝑖(𝑡), 𝑖 = 1, 2. Also we assume that the infectious
𝐼1(𝑡), 𝐼2(𝑡) and recovered 𝑅(𝑡) population data are known and noise-
ree at discrete time points 𝑡𝑗 and can be modeled with the 𝑆𝐸𝐼𝑅𝑆
odel (5). The goal of the work done here is to identify the time-
ependent parameters 𝛽(𝑡), 𝜈(𝑡), 𝛾(𝑡) and 𝜎𝑖(𝑡), 𝑖 = 1, 2, effective and basic
eproduction number 𝑒(𝑡) and 0, respectively, specifically at each
ime 𝑡𝑗 for the Covid-19 infection when 𝐼1, 𝐼2, and 𝑅 are known. To
o this, we need to first estimate 𝐸(𝑡) and 𝑆(𝑡) at each time 𝑡 using
he local lagged adapted generalized method of moments (LLGMM)
arameter estimation scheme described in the patent work of Ladde
nd Otunuga [20]. The estimated parameters are used to model the
isease outbreak’s possible trajectories.

he time varying state and parameter estimation scheme

In this section, we describe, assuming the infected 𝐼1(𝑡), 𝐼2(𝑡), and
recovered 𝑅(𝑡) population data are known, how the exposed 𝐸(𝑡) and
usceptible 𝑆(𝑡) population, together with the transmission 𝛽(𝑡), re-

covery 𝜈(𝑡), and temporary immune 𝛾(𝑡) rates are estimated using
he LLGMM scheme. These estimates are used to calculate the basic
nd effective reproduction numbers of Covid-19 cases for the United
tates for the time period: March 1, 2020 to February 25, 2021. The
LGMM method described in the patent is composed of the following
omponents: (1) development of a stochastic mathematical model of
he continuous time dynamic process, (2) construction of an equiv-
lent time series model, (3) development of generalized method of
oment/observation (GMM) equations, (4) introduction of a concep-

ual and computational parameter estimation scheme, (5) introduction
f a conceptual and computational state estimation scheme, and (6)
erivation of 𝜖-best sub-optimal state and parameter estimates. The first
omponent is satisfied since we have a continuous stochastic 𝑆𝐸𝐼𝑅𝑆
pidemic model governing the transmission of the Covid-19 virus.
n order to construct equivalent time series model to the stochastic
odel, we need to be able to specify which state and parameters to

stimate. The susceptible and exposed states are unknown, and the
odels governing the dynamics of the known infected and recovered
opulation depend on the exposed population, recovery rate 𝜈(𝑡), and
he temporary immune rate 𝛾(𝑡). We will estimate the states 𝐸(𝑡) and
(𝑡) and parameters 𝛽(𝑡), 𝑟𝐼 , 𝜈(𝑡), and 𝛾(𝑡) in two stages. In the first

stage, we apply the LLGMM scheme to the stochastic model governing
the recovered population 𝑅(𝑡) to estimate 𝜈(𝑡) and 𝛾(𝑡). These estimated
parameters are now used in the model governing 𝐼1(𝑡) and 𝐼2(𝑡) to
estimate the state 𝐸(𝑡). The LLGMM scheme is now applied to the
model governing 𝐸(𝑡) to estimate the state 𝑆(𝑡), asymptomatic recovery
rate 𝑟𝐼 , and the transmission rate 𝛽(𝑡). In the second stage, we use the
estimated states 𝐸(𝑡) and 𝑆(𝑡), together with the known states 𝐼1(𝑡), 𝐼2(𝑡)
and 𝑅(𝑡) to update the parameters 𝛽(𝑡), 𝜈(𝑡), and 𝛾(𝑡), and later use these
estimates to simulate the states 𝑆(𝑡), 𝐸(𝑡), 𝐼1(𝑡), 𝐼2(𝑡), and 𝑅(𝑡), and the
effective and basic reproduction numbers 𝑒 and 0, respectively. The
𝜖-best sub-optimal state and parameter estimates are now recorded.

State and parameter estimation process

We explain the state and parameter estimation scheme in two
stages in the following subsections. In Section ‘State and parameter
estimation process: Stage 1’, we estimate 𝜈(𝑡), 𝛾(𝑡), 𝑟𝐼 , 𝜎𝑗 (𝑡), 𝑗 = 1, 2,
and 𝛽(𝑡), together with the state estimates 𝐸(𝑡) and 𝑆(𝑡) satisfying
(5). These estimates are updated in stage 2 of the estimation process
in Section ‘State and parameter estimation process: Stage 2’. The 𝜖-
best sub-optimal estimates are derived in Section ‘Derivation of 𝜖-best

sub-optimal state and parameter estimates’.
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State and parameter estimation process: Stage 1
Let 𝑈 (𝑡) = 𝑆(𝑡)+𝐸(𝑡). We can extract the data for 𝑈 (𝑡) using the fact

that 𝑆 +𝐸 = 1− 𝐼1 − 𝐼2 −𝑅. The model governing 𝛼𝐸 is obtained from
the model governing 𝑆 and 𝐸 in (5) and substituted into the model
governing 𝐼2(𝑡) as follows:

𝛼𝐸 = −𝑑𝑈
𝑑𝑡

+ 𝜇 − 𝜇𝑈 + 𝛾(𝑡)𝑅,

𝑑𝐼2 = −𝑝 𝑑𝑈 +

(

𝑝 (𝜇 − 𝜇𝑈 + 𝛾(𝑡)𝑅) − (𝜈(𝑡) + 𝜇)𝐼2 +
𝜎22 (𝑡)
2

𝐼2

)

𝑑𝑡

− 𝜎2(𝑡)𝐼2𝑑𝑊2(𝑡).

n order to estimate the states 𝐸(𝑡) and 𝑆(𝑡), we first need to estimate
the parameters 𝜈(𝑡) and 𝛾(𝑡). To do this, we setup two time series model
corresponding to the symptomatic infectious and recovered class as
follows:

𝑑𝐼2 = −𝑝 𝑑𝑈 +
(

𝑝 (𝜇 − 𝜇𝑈 + 𝛾(𝑡)𝑅) −
(

𝜈(𝑡) + 𝜇 −
𝜎22 (𝑡)
2

)

𝐼2

)

𝑑𝑡

− 𝜎2(𝑡)𝐼2𝑑𝑊2(𝑡),

𝑑𝑅 =
(

𝑟𝐼𝐼1 +
(

𝜈(𝑡) −
𝜎22 (𝑡)
2

)

𝐼2 − (𝛾(𝑡) + 𝜇)𝑅
)

𝑑𝑡 + 𝜎2(𝑡)𝐼2𝑑𝑊2(𝑡).

(6)

We first explain the discretization scheme as discussed in Otunuga
(2017) [24] and Otunuga (2019) [25]. Let 𝑥 =

(

𝑆,𝐸, 𝐼1, 𝐼2, 𝑅
)

be
ontinuous time stochastic process defined on the interval [𝑡0 − 𝜏, 𝑇 ],
here 𝜏 is a continuous delay constant (with corresponding discrete
elay constant 𝑟). For 𝑡 ∈ [𝑡0 − 𝜏, 𝑇 ], let 𝑡 be an increasing sub-sigma
lgebra of a complete probability space (𝛺, ,) for which 𝑥(𝑡) is 𝑡
easurable. Let P be a partition of the interval [𝑡0 − 𝜏, 𝑇 ] defined by
= {𝑡𝑘 ∶ 𝑡𝑘 = 𝑡0 + 𝑘𝛥𝑡, 𝑘 ∈ 𝐾(−𝑟,𝑁)}, where 𝐾(𝑎, 𝑏) = {𝑖 ∈
∶ 𝑎 ≤ 𝑖 ≤ 𝑏, 𝑎, 𝑏 ∈ Z} and Z is the set of integers. Define

𝑘 as the local admissible sample data observation size at time 𝑡𝑘.
or 𝑟 ≥ 1, 𝑘 ∈ 𝐾 (0, 𝑁), and each 𝑚𝑘 ∈ 𝐾(2, 𝑟). A 𝑚𝑘- point sub-
artition 𝑃𝑘 of the closed interval [𝑡𝑘−𝑚𝑘+1, 𝑡𝑘] is defined as 𝑃𝑘 ∶=
𝑡𝑘−𝑚𝑘+1, 𝑡𝑘−𝑚𝑘+2,… , 𝑡𝑘}. We estimate the parameters 𝜈(𝑡) and 𝛾(𝑡) at
ime 𝑡𝑗 using known data

(

𝐼2(𝑡)
)

𝑡∈𝑃𝑗
and (𝑅(𝑡))𝑡∈𝑃𝑗 by first integrating

(6) on the interval [𝑡𝑗−𝑚𝑗+1, 𝑡𝑗 ] to get

∫ 𝑡𝑗
𝑡𝑗−𝑚𝑗+1

𝑑𝐼2 = −𝑝 ∫ 𝑡𝑗
𝑡𝑗−𝑚𝑗+1

𝑑𝑈 (𝑡)

+ ∫ 𝑡𝑗
𝑡𝑗−𝑚𝑗+1

(

𝑝 (𝜇 − 𝜇𝑈 (𝑡) + 𝛾(𝑡)𝑅) −
(

𝜈(𝑡) + 𝜇 − 𝜎2
2 (𝑡)
2

)

𝐼2(𝑡)
)

𝑑𝑡

− ∫ 𝑡𝑗
𝑡𝑗−𝑚𝑗+1

𝜎2(𝑡)𝐼2(𝑡)𝑑𝑊2(𝑡),

∫ 𝑡𝑗
𝑡𝑗−𝑚𝑗+1

𝑑𝑅(𝑡) = ∫ 𝑡𝑗
𝑡𝑗−𝑚𝑗+1

(

𝑟𝐼𝐼1(𝑡) +
(

𝜈(𝑡) − 𝜎2
2 (𝑡)
2

)

𝐼2(𝑡) − (𝛾(𝑡) + 𝜇)𝑅(𝑡)
)

𝑑𝑡

+ ∫ 𝑡𝑗
𝑡𝑗−𝑚𝑗+1

𝜎2(𝑡)𝐼(𝑡)𝑑𝑊2(𝑡).

(7)

Assuming 𝜈(𝑡) and 𝛾(𝑡) are continuous functions on the closed inter-
val [𝑡0 − 𝜏, 𝑇 ] (and hence on [𝑡𝑗−𝑚𝑗+1, 𝑡𝑗 ]), it follows from the integral
mean value theorem that there exist 𝑡∗𝑗 , 𝑡

∗∗
𝑗 ∈ (𝑡𝑗−𝑚𝑗+1, 𝑡𝑗 ) such that

∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1
𝛾(𝑡)𝑅(𝑡)𝑑𝑡 = 𝛾(𝑡∗∗𝑗 )∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1
𝑅(𝑡)𝑑𝑡,

∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1

(

𝜈(𝑡) −
𝜎22 (𝑡)
2

)

𝐼2(𝑡)𝑑𝑡 =

(

𝜈(𝑡∗𝑗 ) −
𝜎22 (𝑡

∗
𝑗 )

2

)

∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1
𝐼2(𝑡)𝑑𝑡.

Therefore,

∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1
𝑑𝐼2(𝑡) = −𝑝 ∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1
𝑑𝑈 (𝑡) + ∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1
𝑝 (𝜇 − 𝜇𝑈 (𝑡)) 𝑑𝑡

+ 𝑝𝛾(𝑡∗∗𝑗 )∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1
𝑅(𝑡)𝑑𝑡 −

(

𝜈(𝑡∗𝑗 ) −
𝜎2
2 (𝑡

∗
𝑗 )

2

)

∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1
𝐼2(𝑡)𝑑𝑡

−𝜇 ∫

𝑡𝑗
𝐼2(𝑡)𝑑𝑡 − ∫

𝑡𝑗
𝜎2(𝑡)𝐼2(𝑡)𝑑𝑊2(𝑡),
4

𝑡𝑗−𝑚𝑗+1 𝑡𝑗−𝑚𝑗+1
∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1
𝑑𝑅(𝑡) = 𝑟𝐼 ∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1
𝐼1(𝑡)𝑑𝑡 +

(

𝜈(𝑡∗𝑗 ) −
𝜎2
2 (𝑡

∗
𝑗 )

2

)

×∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1
𝐼2(𝑡)𝑑𝑡 −

(

𝛾(𝑡∗∗𝑗 ) + 𝜇
)

∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1
𝑅(𝑡)𝑑𝑡

+ ∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1
𝜎2(𝑡)𝐼2(𝑡)𝑑𝑊2(𝑡),

E
⎡

⎢

⎢

⎣

(

∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1
𝑑
√

𝐼2(𝑡) − E

(

∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1
𝑑
√

𝐼2(𝑡)
|

|

|

𝑡

))2
|

|

|

𝑡

⎤

⎥

⎥

⎦

=
𝜎22 (𝑡

∗
𝑗 )

4
E

[

∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1
𝐼2(𝑡)𝑑𝑡

|

|

|

𝑡

]

.

t is clear from the integrals above that the estimates 𝜈(𝑡∗𝑗 ) and 𝛾(𝑡∗∗𝑗 )
re calculated using 𝑚𝑗 data set at and to the left of time 𝑡𝑗 . Since these
stimates are calculated using 𝑚𝑗 observation size at and to the left of
𝑗 , we write 𝜈(𝑡∗𝑗 ) ≡ 𝜈̂𝑡𝑗 ,𝑚𝑗

, 𝛾(𝑡∗∗𝑗 ) ≡ 𝛾̂𝑡𝑗 ,𝑚𝑗
, 𝜎2(𝑡∗𝑗 ) ≡ 𝜎̂2(𝑡𝑗 , 𝑚𝑗 ). The third

omponent of the LLGMM scheme is satisfied by discretizing the above
ntegral equations and applying conditional expectation to obtain

𝑗
∑

𝑘=𝑗−𝑚𝑗+1
E
[

𝛥𝐼2𝑘
|

|

|

𝑘−1

]

= −𝑝
𝑗
∑

𝑘=𝑗−𝑚𝑗+1
E
[

𝛥𝑈𝑘
|

|

|

𝑘−1

]

+ 𝑝
𝑗
∑

𝑘=𝑗−𝑚𝑗+1

(

𝜇 − 𝜇𝑈𝑘−1
)

𝛥𝑡 + 𝑝𝛾̂𝑡𝑗 ,𝑚𝑗

𝑗
∑

𝑘=𝑗−𝑚𝑗+1
𝑅𝑘−1𝛥𝑡

−

(

𝜈(𝑡∗𝑗 ) −
𝜎2
2 (𝑡

∗
𝑗 )

2

)

∑𝑗
𝑘=𝑗−𝑚𝑗+1

𝐼2𝑘−1𝛥𝑡,

𝑗
∑

𝑘=𝑗−𝑚𝑗+1
E
[

𝛥𝑅𝑘
|

|

|

𝑘−1

]

= 𝑟𝐼
𝑗
∑

𝑘=𝑗−𝑚𝑗+1
𝐼1𝑘−1𝛥𝑡 +

(

𝜈̂𝑡𝑗 ,𝑚𝑗
−

𝜎̂2
2 (𝑡𝑗 , 𝑚𝑗 )

2

)

×
𝑗
∑

𝑘=𝑗−𝑚𝑗+1
𝐼2𝑘−1𝛥𝑡 −

(

𝛾̂𝑡𝑗 ,𝑚𝑗
+ 𝜇

)

𝑗
∑

𝑘=𝑗−𝑚𝑗+1
𝑅𝑘−1𝛥𝑡,

(8)

here 𝐼1𝑘−1 = 𝐼1(𝑡𝑘−1), 𝐼2𝑘−1 = 𝐼2(𝑡𝑘−1), 𝑅𝑘−1 = 𝑅(𝑡𝑘−1), 𝑈𝑘−1 = 𝑈 (𝑡𝑘−1),
𝐼2𝑘 = 𝐼2(𝑡𝑘) − 𝐼2(𝑡𝑘−1), 𝛥𝑅𝑘 = 𝑅(𝑡𝑘) −𝑅(𝑡𝑘−1), and 𝜈̂𝑡𝑗 ,𝑚𝑗

, 𝛾̂𝑡𝑗 ,𝑚𝑗
, 𝜎̂2(𝑡𝑗 , 𝑚𝑗 )

re parameter estimates of 𝜈(𝑡), 𝛾(𝑡), and 𝜎(𝑡), respectively, at time 𝑡𝑗 .
he unique solution 𝜈̂𝑡𝑗 ,𝑚𝑗

, 𝛾̂𝑡𝑗 ,𝑚𝑗
, and 𝜎̂2(𝑡𝑗 , 𝑚𝑗 ) of (8) is obtained as

q. (9) which is given in Box I.
Let 𝛥𝑊 𝑙

𝑗,𝑚𝑗
be a Wiener process with mean 0 and variance 𝛥𝑡, where

∈ 𝐾(1, 𝑁) for sample size 𝑁 , 𝑙 ∈ 𝐾(1, 𝐿) for 𝐿 simulations, and 𝑚𝑗 ∈
(2, 𝑟) is the observation size. Let 𝐸̂𝑙

𝑡𝑗 ,𝑚𝑗
be the 𝑙th simulated exposed

population estimate at time 𝑡𝑗 using 𝑚𝑗 observation size, 𝑙 ∈ 𝐾(1, 𝐿). Let
1(𝑡𝑗 ) = 𝐼1𝑗 , 𝐼2(𝑡𝑗 ) = 𝐼2𝑗 , and 𝑅(𝑡𝑗 ) = 𝑅𝑗 be the known asymptomatic
nfected, symptomatic infected, and recovered population at time 𝑡𝑗 ,
espectively, and set 𝐼 𝑙2𝑡𝑗 ,𝑚𝑗

= 𝐼2𝑗 and 𝑅̂𝑙
𝑡𝑗 ,𝑚𝑗

= 𝑅𝑗 . We extract 𝐸̂𝑙
𝑡𝑗 ,𝑚𝑗

from
he discretized model governing the infected population in (5) using
onte-Carlo method and Euler scheme as follows:

̂ 𝑙
𝑗−1,𝑚𝑗−1

=

(

𝛥𝐼2(𝑡𝑗 ) +

(

𝜈̂𝑗−1,𝑚𝑗−1
+ 𝜇 −

𝜎̂22 (𝑡𝑗−1, 𝑚𝑗−1)
2

)

𝐼2(𝑡𝑗−1)𝛥𝑡

+ 𝜎̂2(𝑡𝑗−1, 𝑚𝑗−1)𝐼2(𝑡𝑗−1)𝛥𝑊 𝑙
𝑗,𝑚𝑗

)

∕(𝛼𝛥𝑡),

here 𝛥𝐼2(𝑡𝑗 ) = 𝐼2(𝑡𝑗 )−𝐼2(𝑡𝑗−1), 𝛥𝑊 𝑙
𝑗,𝑚𝑗

= 𝑊 𝑙
𝑗,𝑚𝑗

−𝑊 𝑙
𝑗−1,𝑚𝑗−1

. We take the
verage

̂𝑗,𝑚𝑗
= 1

𝐿

𝐿
∑

𝑙=1
𝐸̂𝑙
𝑗,𝑚𝑗

as the estimated value of 𝐸(𝑡) at time 𝑡𝑗 using 𝑚𝑗 observation size. From
this, the simulated value 𝑆̂𝑗,𝑚𝑗

of the susceptible population 𝑆(𝑡) at time
𝑡 using 𝑚 observation size is calculated as
𝑗 𝑗
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𝑆

𝛯

w

𝛾̂𝑡𝑗 ,𝑚𝑗
=

(

𝑝
∑𝑗

𝑘=𝑗−𝑚𝑗+1
(

𝜇 − 𝜇𝑈𝑘−1
)

− 𝜇
∑𝑗

𝑘=𝑗−𝑚𝑗+1
𝐼2𝑘−1 + 𝑟𝐼

∑𝑗
𝑘=𝑗−𝑚𝑗+1

𝐼1𝑘−1
)

𝛥𝑡 −
∑𝑗

𝑘=𝑗−𝑚𝑗+1
E
[

𝑝𝛥𝑈𝑘 + 𝛥𝐼2𝑘 + 𝛥𝑅𝑘
|

|

|

𝑘−1

]

(1 − 𝑝)
∑𝑗

𝑘=𝑗−𝑚𝑗+1
𝑅𝑘−1𝛥𝑡

−
𝜇

1 − 𝑝
,

𝜈̂𝑡𝑗 ,𝑚𝑗
=

(

𝑝
∑𝑗

𝑘=𝑗−𝑚𝑗+1
(

𝜇 − 𝜇𝑈𝑘−1
)

− 𝜇𝑝
∑𝑗

𝑘=𝑗−𝑚𝑗+1
𝑅𝑘−1 + 𝑝 𝑟𝐼

∑𝑗
𝑘=𝑗−𝑚𝑗+1

𝐼1𝑘−1
)

𝛥𝑡 −
∑𝑗

𝑘=𝑗−𝑚𝑗+1
E
[

𝑝𝛥𝑈𝑘 + 𝛥𝐼2𝑘 + 𝑝𝛥𝑅𝑘
|

|

|

𝑘−1

]

(1 − 𝑝)
∑𝑗

𝑘=𝑗−𝑚𝑗+1
𝐼2𝑘−1𝛥𝑡

−
𝜇

1 − 𝑝
+

𝜎̂22 (𝑡𝑗 , 𝑚𝑗 )
2

,

𝜎̂22 (𝑡𝑗 , 𝑚𝑗 ) =
4
∑𝑗

𝑘=𝑗−𝑚𝑗+1

(

𝛥
√

𝐼
2𝑘

− 1
𝑚𝑗

∑𝑗
𝑘=𝑗−𝑚𝑗+1

𝛥
√

𝐼2𝑘

)2

∑𝑗
𝑘=𝑗−𝑚𝑗+1

𝐼2𝑘−1𝛥𝑡
. (9)

Box I.
w
c

f
1

T
d
e
b

b
f
𝑚

̂𝑗,𝑚𝑗
= 1 − 𝐸̂𝑗,𝑚𝑗

− 𝐼1𝑗 − 𝐼2𝑗 − 𝑅𝑗 . (10)

Define

1
𝑗,𝑚𝑗

=
(

𝐸̂𝑗,𝑚𝑗
− 𝑎𝐼1𝑗 − 𝑏𝐼2𝑗

)2
,

here 𝑎 and 𝑏 are constants. The estimates 𝑚̂𝑗 , 𝑎̂, 𝑏̂, and 𝑟̂𝐼 of 𝑚𝑗 , 𝑎,
𝑏, and 𝑟𝐼 that minimize the square 𝛯1

𝑗,𝑚𝑗
are calculated and used to

obtain the stage 1 estimate for the exposed class 𝐸(𝑡) as 𝐸̂𝑗,𝑚̂𝑗
for each

𝑗 ∈ 𝐾(1, 𝑁). The stage 1 estimate 𝑆̂𝑗,𝑚̂𝑗
for the susceptible class 𝑆(𝑡) is

calculated using (10) as

𝑆̂𝑗,𝑚̂𝑗
= 1 − 𝐸̂𝑗,𝑚̂𝑗

− 𝐼1𝑗 − 𝐼2𝑗 − 𝑅𝑗 .

Using the fact that there exists constants 𝑡𝑗 , ̄̄𝑡𝑗 ∈ (𝑡𝑗−𝑚𝑗+1, 𝑡𝑗 ) such
that

∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1
𝛽(𝑡)𝑆(𝑡)

(

𝜂𝐼1(𝑡) + 𝐼2(𝑡)
)

𝑑𝑡 = 𝛽(𝑡𝑗 )∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1
𝑆(𝑡)

(

𝜂𝐼1(𝑡) + 𝐼2(𝑡)
)

𝑑𝑡,

∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1

𝜎2
1 (𝑡)
2

𝑆2(𝑡)
(

𝜂𝐼1(𝑡) + 𝐼2(𝑡)
)2 𝑑𝑡 =

𝜎2
1 (
̄̄𝑡𝑗 )
2 ∫

𝑡𝑗

𝑡𝑗−𝑚𝑗+1
𝑆2(𝑡)

(

𝜂𝐼1(𝑡) + 𝐼2(𝑡)
)2 𝑑𝑡,

we estimate the remaining parameters 𝛽(𝑡) and 𝜎1(𝑡) by integrating the
equation governing 𝐸(𝑡) in (5) on (𝑡𝑗−𝑚𝑗+1, 𝑡𝑗 ) as follows:

∫ 𝑡𝑗
𝑡𝑗−𝑚𝑗+1

𝑑𝐸(𝑡) = 𝛽(𝑡𝑗 ) ∫
𝑡𝑗
𝑡𝑗−𝑚𝑗+1

𝑆(𝑡)
(

𝜂𝐼1(𝑡) + 𝐼2(𝑡)
)

𝑑𝑡 − (𝛼 + 𝜇) ∫ 𝑡𝑗
𝑡𝑗−𝑚𝑗+1

𝐸(𝑡)𝑑𝑡

− ∫ 𝑡𝑗
𝑡𝑗−𝑚𝑗+1

𝜎21 (𝑡)

2
𝑆(𝑡)

(

𝜂𝐼1(𝑡) + 𝐼2(𝑡)
)2 𝑑𝑡

+ ∫ 𝑡𝑗
𝑡𝑗−𝑚𝑗+1

𝜎1(𝑡)𝑆(𝑡)
(

𝜂𝐼1(𝑡) + 𝐼2(𝑡)
)

𝑑𝑊1(𝑡).

(11)

Following the same argument above, by discretizing and taking the
conditional expectation of integrals in (11), the estimates 𝛽(𝑡𝑗 ) ≡ 𝛽𝑗,𝑚𝑗
and 𝜎̂1(𝑡𝑗 , 𝑚𝑗 ) of 𝛽(𝑡) and 𝜎1(𝑡), respectively, at time 𝑡𝑗 are obtained as
Eq. (12) (see Box II).

State and parameter estimation process: Stage 2
In stage 2, we updated the exposed and susceptible state estimates

𝐸̂𝑗,𝑚̂𝑗
and 𝑆̂𝑗,𝑚̂𝑗

, and parameter estimates 𝜈̂𝑗,𝑚̂𝑗
and 𝛾̂𝑗,𝑚̂𝑗

of 𝜈(𝑡) and 𝛾(𝑡),
respectively. Similar to the outline above, let 𝜈𝑗,𝑚𝑗

and 𝛾𝑗,𝑚𝑗
be the

updated estimates for the parameters 𝜈(𝑡) and 𝛾(𝑡), respectively, at time
5

𝑡𝑗 using 𝑚𝑗 data sets at and to the left of 𝑡𝑗 . The updated infectious rate
𝜈𝑗,𝑚𝑗
and temporary immune rate 𝛾𝑗,𝑚𝑗

at time 𝑡𝑗 are obtained as

𝜈𝑗,𝑚𝑗
=

𝛼𝑝
∑𝑗

𝑘=𝑗−𝑚𝑗+1
𝐸̂𝑘−1,𝑚̂𝑘−1 𝛥𝑡+

𝜎̂22 (𝑡𝑗 ,𝑚𝑗 )
2

∑𝑗
𝑘=𝑗−𝑚𝑗+1

𝐼2𝑘−1 𝛥𝑡−
∑𝑗

𝑘=𝑗−𝑚𝑗+1
E
[

𝛥𝐼2𝑘 |𝑘−1

]

∑𝑗
𝑘=𝑗−𝑚𝑗+1

𝐼2𝑘−1 𝛥𝑡
− 𝜇,

𝛾𝑗,𝑚𝑗
=

𝑟𝐼
∑𝑗

𝑘=𝑗−𝑚𝑗+1
𝐼1𝑘−1+

(

𝜈𝑗,𝑚𝑗 −
𝜎̂22 (𝑡𝑗 ,𝑚𝑗 )

2

)

∑𝑗
𝑘=𝑗−𝑚𝑗+1

𝐼2𝑘−1 𝛥𝑡−
∑𝑗

𝑘=𝑗−𝑚𝑗+1
E[𝛥𝑅𝑘|𝑘−1]

∑𝑗
𝑘=𝑗−𝑚𝑗+1

𝑅𝑘−1𝛥𝑡
− 𝜇.

(13)

In order to update the state values at time 𝑡𝑗 , we discretize the
Itô differential Eqs. (5) using the implicit Euler scheme [26,27] as
described in [11]. For the stochastic model

𝑑𝑦 = 𝑓 (𝑡, 𝑦, 𝜃(𝑡))𝑑𝑡 + 𝑔(𝑡, 𝑦, 𝜃(𝑡))𝑑𝑊 (𝑡),

here 𝑦 = (𝑆,𝐸, 𝐼1, 𝐼2, 𝑅), 𝑓 and 𝑔 represent the drift and diffusion
oefficient of system (5) with time-dependent parameters 𝜃, the implicit

Euler scheme gives the discretize 𝑙th simulated solution 𝑦𝑙𝑗+1 ≡ 𝑦𝑙𝑗,𝑚𝑗
satisfying

𝑦𝑙𝑗+1 − 𝑦𝑙𝑗 = 𝜀𝑓 (𝑡𝑗+1, 𝑦𝑙𝑗+1, 𝜃
𝑙
𝑗+1)𝛥𝑡 + (1 − 𝜀)𝑓 (𝑡𝑗 , 𝑦𝑙𝑗 , 𝜃

𝑙
𝑗 )𝛥𝑡 + 𝑔(𝑡𝑗 , 𝑦𝑙𝑗 , 𝜃

𝑙
𝑗 )𝛥𝑊

𝑙
𝑗 ,

or 0 ≤ 𝜀 ≤ 1, where 𝑗 = 0, 1, 2,… , 𝑁 for sample size 𝑁 , 𝑙 =
, 2,… , 𝐿 for 𝐿 simulations in the Monte-Carlo method, 𝜃𝑙𝑗 ≡ 𝜃𝑙𝑗,𝑚𝑗

=
{𝛽∗𝑗 , 𝜈

∗
𝑗 , 𝛾

∗
𝑗 , 𝜎

∗
1 (𝑡𝑗 ), 𝜎

∗
2 (𝑡𝑗 ), 𝜂, 𝛼, 𝑟𝐼 , 𝜇} as described in (9), (12), and (13).

he simulated state 𝑦𝑙𝑗 ≡ 𝑦𝑙𝑗,𝑚𝑗
for the 𝑙th simulation at time 𝑡𝑗 using 𝑚𝑗

ata set at and to the left of 𝑚𝑗 can be determined iteratively and the
stimate 𝑦𝑗+1 (regarded as the simulated state estimate) is calculated
y taking the average 𝑦𝑗+1 =

1
𝐿
∑𝐿

𝑙=1 𝑦
𝑙
𝑗+1.

Derivation of 𝜖-best sub-optimal state and parameter estimates

We estimated, among the values {𝑦𝑙𝑗 ≡ 𝑦𝑙𝑗,𝑚𝑗
}𝑟𝑚𝑗=2

at time 𝑡𝑗 , the
value closest to the known real value. Specifically, the correct delay
constant 𝑚𝑗 must be determined. Let 𝑆𝑙

𝑗,𝑚𝑗
, 𝐸𝑙

𝑗,𝑚𝑗
, 𝐼 𝑙1𝑗,𝑚𝑗

, 𝐼 𝑙2𝑗,𝑚𝑗
and 𝑅𝑙

𝑗,𝑚𝑗

e the simulated susceptible, exposed, asymptomatic, symptomatic in-
ectious and recovered estimate for the 𝑙th simulation at time 𝑡𝑗 using
𝑗 observations at and to the left of 𝑡𝑗 . We take the average

𝑆𝑗,𝑚𝑗
= 1

𝐿

𝐿
∑

𝑙=1
𝑆𝑙
𝑗,𝑚𝑗

; 𝐸𝑗,𝑚𝑗
= 1

𝐿

𝐿
∑

𝑙=1
𝐸𝑙
𝑗,𝑚𝑗

; 𝐼1𝑗,𝑚𝑗 = 1
𝐿

𝐿
∑

𝑙=1
𝐼 𝑙1𝑗,𝑚𝑗

;

𝐼2𝑗,𝑚𝑗 = 1
𝐿

𝐿
∑

𝑙=1
𝐼 𝑙2𝑗,𝑚𝑗

; 𝑅𝑗,𝑚𝑗
= 1

𝐿

𝐿
∑

𝑙=1
𝑅𝑙
𝑗,𝑚𝑗

,

(14)
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a

0

m

𝜎̂21 (𝑡𝑗 , 𝑚𝑗 ) =

∑𝑗
𝑘=𝑗−𝑚𝑗+1

(

𝛥𝐸̂𝑘,𝑚̂𝑘
− 1

𝑚𝑗

∑𝑗
𝑛=𝑗−𝑚𝑗+1

𝛥𝐸̂𝑛,𝑚̂𝑛

)2

∑𝑗
𝑘=𝑗−𝑚𝑗+1

𝑆̂2
𝑘−1,𝑚̂𝑘−1

(

𝜂𝐼1𝑘−1 + 𝐼2𝑘−1
)2

𝛥𝑡
,

𝛽𝑗,𝑚𝑗
=

∑𝑗
𝑘=𝑗−𝑚𝑗+1

E
[

𝛥𝐸̂𝑘,𝑚̂𝑘
|𝑘−1

]

+ (𝛼 + 𝜇)
∑𝑗

𝑘=𝑗−𝑚𝑗+1
𝐸̂𝑘−1,𝑚̂𝑘−1

𝛥𝑡 +
𝜎̂21 (𝑡𝑗 ,𝑚𝑗 )

2
∑𝑗

𝑘=𝑗−𝑚𝑗+1
𝑆̂𝑘−1,𝑚̂𝑘−1

(

𝜂𝐼1𝑘−1 + 𝐼2𝑘−1
)2

∑𝑗
𝑘=𝑗−𝑚𝑗+1

𝑆̂𝑘−1,𝑚̂𝑘−1

(

𝜂𝐼1𝑘−1 + 𝐼2𝑘−1
)

𝛥𝑡
. (12)

Box II.
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as the simulated value of 𝑆(𝑡), 𝐸(𝑡), 𝐼1(𝑡), 𝐼2(𝑡), and 𝑅(𝑡) at time 𝑡𝑗 using
𝑚𝑗 observations at and to the left of 𝑡𝑗 . Define

𝛯𝑗,𝑚𝑗
=
(

𝑆𝑡𝑗 − 𝑆𝑗,𝑚𝑗

)2
+
(

𝐸𝑡𝑗 − 𝐸𝑗,𝑚𝑗

)2
+
(

𝐼1𝑡𝑗 − 𝐼1𝑗,𝑚𝑗

)2

+
(

𝐼2𝑡𝑗 − 𝐼2𝑗,𝑚𝑗

)2
+
(

𝑅𝑡𝑗 − 𝑅𝑗,𝑚𝑗

)2
(15)

as the quadratic mean square error between the known data
{𝑆̂𝑗,𝑚̂𝑗

, 𝐸̂𝑗,𝑚̂𝑗
, 𝐼1𝑡𝑗 , 𝐼2𝑡𝑗 , 𝑅𝑡𝑗 } and the averaged realizations

{𝑆𝑗,𝑚𝑗
, 𝐸𝑗,𝑚𝑗

, 𝐼1𝑗,𝑚𝑗 , 𝐼2𝑗,𝑚𝑗 , 𝑅𝑗,𝑚𝑗
}𝑟𝑚𝑗=2

. For any arbitrary small positive
number 𝜖 and for each time 𝑡𝑗 , we define the 𝜖-sub-optimal admissible
set of 𝑚𝑗 at 𝑡𝑗 as

𝑗 = {𝑚𝑗 ∶ 𝛯𝑗,𝑚𝑗
< 𝜖}. (16)

If 𝑚𝑗 ∈ 𝑗 gives the minimum value for 𝛯𝑗,𝑚𝑗
, then we record

𝑚𝑗 as 𝑚∗
𝑗 . If condition (16) is not met at time 𝑡𝑗 , then the value

of 𝑚𝑗 where the minimum min𝑚𝑗
𝛯𝑗,𝑚𝑗

is attained is recorded as 𝑚∗
𝑗 .

The 𝜖-best sub-optimal parameter and state estimates at time 𝑡𝑗 are
now recorded as 𝜃𝑗,𝑚∗

𝑗
= {𝛽𝑗,𝑚∗

𝑗
, 𝜈𝑗,𝑚∗

𝑗
, 𝛾𝑗,𝑚∗

𝑗
, 𝜎1(𝑡𝑗 , 𝑚∗

𝑗 ), 𝜎2(𝑡𝑗 , 𝑚
∗
𝑗 )} and

{𝑆𝑗,𝑚∗
𝑗
, 𝐸𝑗,𝑚∗

𝑗
, 𝐼1𝑗,𝑚∗𝑗

, 𝐼2𝑗,𝑚∗𝑗
, 𝑅𝑗,𝑚∗

𝑗
}, respectively.

Case study: COVID-19

Data source

We apply the LLGMM scheme to the 𝑆𝐸𝐼𝑅𝑆 epidemic model gov-
erning the United States COVID-19 cases. The daily COVID-19 cases
data was collected from CDC6 and Center for Systems Science and
Engineering (CSSE) at Johns Hopkins University7 for the COVID-19
periods 04/01/2020 through 03/06/2021. As explained by CDC, the
numbers are confirmed COVID-19 cases as reported by U.S. states,
U.S. territories, New York City, and the District of Columbia from the
previous day. The recovered COVID-19 data cases were collected from
the COVID Tracking Project8 for the COVID-19 periods 04/01/2020
through 02/27/2021 and compared with the CSSE daily data.

The CDC COVID-19 data is given daily, so that 𝛥𝑡 = 1 day. According
to CDC, the incubation period for COVID-19 is thought to extend to
14 days, with a median time of 4-5 days of exposure to symptoms
onset.9 McAloon et al. [28] showed in their work that the time from
exposure to symptom onset is 6 days. Also, in their analysis based on
confirmed cases outside Wuhan, Lauer et al. and Linton et al. [29,30]
estimated the median incubation period to be 5.0 days with a range
of 2 to 14 days, similar to 5.2 days incubation period with symptom
onset between 3 to 6 days reported by Li et al. [31]. For these reasons,

6 https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-
nd-Deaths-by-State-o/9mfq-cb36, accessed 02.27.2021.

7 https://github.com/CSSEGISandData/COVID-19/tree/master/, accessed
3.07.2021.

8 https://covidtracking.com/data, accessed 02.27.2021.
9 https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-
6

anagement-patients.html#, accessed 10.30.2020.
measuring time in days, we assume 𝛼 should be selected in the range
[1∕14, 1∕2] per day and used a default value of 1∕6 day−1. The mea-
sure of the infectiousness of asymptomatic cases to symptomatic cases
remains highly uncertain. According to the parameter values for the
five COVID-19 Pandemic Planning Scenarios produced by CDC,10 the
nfectiousness of asymptomatic individuals relative to symptomatic is
stimated to be 𝜂 = 0.75. From the CIA World Factbook,11 the current
opulation of the United States as at July 2020 is 332, 639, 102. So, we
et  = 332, 639, 102. Also, The annual U.S. birth rates for the year 2020
s 12.4 births per 1000 population, while the death rate is 8.3 death per
000 population and life expectancy is 80.3 years.12 Therefore, we set
to be in the range

[

83
3650000 ,

1
80.3×365

]

. A complete list of values used in
he simulation process is given in Table 1.

arameter and state estimation: Numerical simulation

The COVID-19 infected6 and recovered8 data plot are shown in
ig. 2(a) and (b), respectively. Using the 𝑆𝐸𝐼𝑅𝑆 model, and setting the
atency rate 𝛼 = 1∕6, the exposed population {𝐸(𝑡𝑗 )}𝑁𝑗=𝑟+1 is estimated
n stage 1 as {𝐸̂𝑗,𝑚̂}𝑁𝑗=𝑟+1 using the LLGMM scheme with delay constants
= 90 days (with 2 ≤ 𝑚𝑗 ≤ 90) and 𝑟 = 150 days (with 2 ≤ 𝑚𝑗 ≤ 150).

The estimates at time 𝑡𝑗 are calculated using 𝑚𝑗 past data points at
and to the left of 𝑡𝑗 . These values are estimated in stage 1 of the
estimation stage in Section ‘State and parameter estimation process:
Stage 1’ and values plotted in red color in Fig. 4. The Susceptible
population {𝑆(𝑡𝑗 )}𝑁𝑗=𝑟+1 is estimated in stage 1 as {𝑆̂𝑗,𝑚̂}𝑁𝑗=𝑟+1 using delay
onstants 𝑟 = 90 days (with 2 ≤ 𝑚𝑗 ≤ 90) and 𝑟 = 150 days (with
≤ 𝑚𝑗 ≤ 150) with the fact that 𝑆 +𝐸 + 𝐼1 + 𝐼2 +𝑅 =  . These values
re plotted in red color in Fig. 3. It can be seen from the estimated
xposed and susceptible population that the trend of the infected cases
ncreases (decreases) in the months when the number of those who are
xposed also increases(decreases) and the number of those susceptible
o COVID-19 decreases (increases).

The estimated exposed and susceptible populations {𝐸̂𝑗,𝑚̂}𝑁𝑗=𝑟+1 and
{𝑆̂𝑗,𝑚̂}𝑁𝑗=𝑟+1, respectively, in stage 1, together with the real infected and
recovered population are used to estimate the noise infected intensity
{𝜎̂1(𝑡𝑗 , 𝑚𝑗 )}𝑁𝑗=𝑟+1 and time-dependent transmission rate {𝛽𝑗,𝑚𝑗

}𝑁𝑗=𝑟+1 in
tage 1 and also used to update the time-dependent recovery rate
𝜈𝑗,𝑚𝑗

}𝑁𝑗=𝑟+1 and temporary immune rate {𝛾𝑗,𝑚𝑗
}𝑁𝑗=𝑟+1 in stage 2 of the

stimation process (see discussions in Sections ‘State and parame-
er estimation process: Stage 1’ and ‘State and parameter estimation
rocess: Stage 2’). These time varying parameters are later used in
tage 2 in Section ‘State and parameter estimation process: Stage
’ to simulate the susceptible, exposed, infected and recovered pop-
lation. We note here that there are 𝑚𝑗 estimates for each values

10 https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.
html#table-2, accessed 03.06.2021.

11 https://www.cia.gov/the-world-factbook/countries/united-states/,
accessed 03.07.2021

12 CIA World Factbook, https://www.cia.gov/library/publications/the-

world-factbook/, accessed 09.29.2020.

https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36
https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36
https://github.com/CSSEGISandData/COVID-19/tree/master/
https://covidtracking.com/data
https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://www.cia.gov/the-world-factbook/countries/united-states/
https://www.cia.gov/library/publications/the-world-factbook/
https://www.cia.gov/library/publications/the-world-factbook/
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Table 1
𝑆𝐸𝐼𝑅𝑆 model parameter values used in application of the LLGMM state and parameter identification scheme.

Parameter Description Units Range References

𝛼 Latency rate day−1 [ 1
14
, 1
2
]b [29–31]

𝜇 Birth / death rate day−1
[

83
3650000

, 1
80.3×365

]

CIAc

𝜂 Asymptomatic infectiousness day−1 0.75 CDCa

𝑟𝐼 Asymptomatic recovery rate day−1 1∕10.5 Estimated
𝛽(0), 𝜈(0), 𝛾(0) Initial conditions 0
𝜎1(0), 𝜎2(0) Initial conditions 0
𝑟 Maximum allowed past data points 90, 150 days
 United States population as at July 2020 33, 26, 39, 102 CIAb

𝑁 Number of days from 4/1/2020–2/25/2021 205

ahttps://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html#table-2, accessed 03.06.2021.
bhttps://www.cia.gov/the-world-factbook/countries/united-states/, accessed 03.07.2021.

cCIA World Factbook, https://www.cia.gov/library/publications/the-world-factbook/, accessed 09.29.2020.
Fig. 2. Real infected6 and recovered8 population.
𝑆𝑗,𝑚𝑗
, 𝐸𝑗,𝑚𝑗

, 𝐼1𝑗,𝑚𝑗 , 𝐼2𝑗,𝑚𝑗 , and 𝑅𝑗,𝑚𝑗
. The best estimates, otherwise

known as the 𝜖-best sub-optimal parameter and state estimates, denoted
{𝛽𝑗,𝑚∗

𝑗
}𝑁𝑗=𝑟+1, {𝜈𝑗,𝑚∗

𝑗
}𝑁𝑗=𝑟+1, {𝛾𝑗,𝑚∗

𝑗
}𝑁𝑗=𝑟+1, {𝜎1(𝑡𝑗 , 𝑚

∗
𝑗 )}

𝑁
𝑗=𝑟+1, {𝜎2(𝑡𝑗 , 𝑚

∗
𝑗 )}

𝑁
𝑗=𝑟+1

and {𝑆𝑗,𝑚∗
𝑗
}𝑁𝑗=𝑟+1, {𝐸𝑗,𝑚∗

𝑗
}𝑁𝑗=𝑟+1, {𝐼1𝑗,𝑚∗𝑗

}𝑁𝑗=𝑟+1, {𝐼2𝑗,𝑚∗𝑗
}𝑁𝑗=𝑟+1,

{𝑅𝑗,𝑚∗
𝑗
}𝑁𝑗=𝑟+1, respectively, are calculated in Section ‘Derivation of 𝜖-best

sub-optimal state and parameter estimates’ by choosing the observation
size 𝑚∗

𝑗 that satisfies condition (16).
The simulated susceptible {𝑆𝑗,𝑚∗

𝑗
}𝑁𝑗=𝑟+1 and exposed {𝐸𝑗,𝑚∗

𝑗
}𝑁𝑗=𝑟+1

population are shown (in blue) in Figs. 3 and 4, respectively. The results
in Fig. 3(a) and (b) are derived using maximum delay constants 𝑟 = 90
and 𝑟 = 150 days, respectively, corresponding to 3 and 5 months past
data. We noticed a decline in the number of susceptible individuals in
the time periods 10/01/2020-12/24/2020. These periods fall around
the festive Thanksgiving and Christmas in the United States when
people travel around the country. We also notice an increasing trend
in the number of individuals susceptible to the disease from December
2020 to February 2021. These period coincides with the period when
the daily count of total Covid-19 vaccine doses administered is also
increasing. Further research is being done to analyze the correlation
between these two occurrences and to discuss factor(s) contributing to
the incline and decline in the susceptible population.

The blue plot in Fig. 4 is the trajectory of the simulated exposed
population {𝐸𝑗,𝑚∗

𝑗
}𝑁𝑗=𝑟+1. The side by side comparison of the trajecto-

ries of the estimated {𝐸̂𝑗,𝑚̂𝑗
}𝑁𝑗=𝑟+1 and simulated {𝐸𝑗,𝑚∗

𝑗
}𝑁𝑗=𝑟+1 exposed

population in Fig. 4 shows that the LLGMM algorithm fits well and
the algorithm seems to prefer using many past data points as seen
in Fig. 16, with better result in Fig. 4(b) where the maximum delay
constant is 𝑟 = 150 days. We see that the higher the maximum delay
constant 𝑟, the better the simulation results. The results in Fig. 4(a) and
7

(b) are derived using maximum delay constants 𝑟 = 90 and 𝑟 = 150,
respectively.

Fig. 5(a) shows the comparison of the real6 (red) and simulated
{𝐼𝑗,𝑚∗

𝑗
}𝑁𝑗=𝑟+1 = {𝐼1𝑗,𝑚∗𝑗

}𝑁𝑗=𝑟+1 + {𝐼2𝑗,𝑚∗𝑗
}𝑁𝑗=𝑟+1 (blue) infected infectious

population using delay constant 𝑟 = 90. Fig. 5(b) shows the comparison
of the real6 (red) and simulated {𝐼𝑗,𝑚∗

𝑗
}𝑁𝑗=𝑟+1 (blue) infected infectious

population using delay constant 𝑟 = 150. The number of infected and ex-
posed cases rise in the month of October, November and December. As
explained above, these periods fall around the festive Thanksgiving and
Christmas in the United States when people travel around the country.
We noticed a decline in the number of exposed and infected individuals
starting around late December 2020 to late February 2021 when the
daily count of total Covid-19 vaccine doses administered is increasing.
Analysis is currently being done to investigate if there is any correlation
between the daily counts of exposed, infected, recovered individuals
and the daily count of total Covid-19 vaccine doses administered.

Fig. 6(a) shows the comparison of the recovered8 (red) and sim-
ulated {𝑅𝑗,𝑚∗

𝑗
}𝑁𝑗=𝑟+1 (blue) recovered population using delay constant

𝑟 = 90. Fig. 6(b) shows the comparison of the real (red) and simulated
{𝑅𝑗,𝑚∗

𝑗
}𝑁𝑗=𝑟+1 (blue) recovered population using delay constant 𝑟 = 150.

Fig. 7(a)–(b) shows the trajectory of the transmission rate
{𝛽𝑗,𝑚∗

𝑗
}𝑁𝑗=𝑟+1 using delay constants 𝑟 = 90 days and 𝑟 = 150 days, respec-

tively. We see that on the average, there are spikes in the transmission
rate during the month of November and early December, 2020 when
the infection cases rise. This also confirms that the transmission of
Covid-19 cases rises during the Thanksgiving and Christmas period in

https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html#table-2
https://www.cia.gov/the-world-factbook/countries/united-states/
https://www.cia.gov/library/publications/the-world-factbook/
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Fig. 3. Simulated (blue) and estimated (red) susceptible values with maximum time delays 𝑟 = 90 and 𝑟 = 150 days. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 4. Simulated (blue) and estimated exposed values (red) with maximum time delays 𝑟 = 90 and 𝑟 = 150 days. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
the United States. As discussed in the introduction section, the FDA13

issued an Emergency Use Authorization (EUA) for the Pfizer-BioNTech,
the Moderna, and the Johnson & Johnson COVID-19 vaccines on
December 11, 2020, December 18, 2020, and February 27, 2021,
respectively, in the United States. We see a decline in the transmission
rate of the disease (as evidenced by the decline in the estimated and
fitted trajectory of {𝛽𝑗,𝑚∗

𝑗
}𝑁𝑗=𝑟+1 and 𝛽(𝑡) in Figs. 7 and 9, respectively,)

starting from late December, 2020. This decrease occured after vaccines
were administered. The average of the transmission rate using 𝑟 = 90
days delay constant is 0.1073 per day. In their work, Lingzhi et al. [32]
used the DELPHI v2p8 (Differential Equations Leads to Predictions of
Hospitalizations and Infections) model to predict 𝛽(𝑡) and claim it is of
the form 2

𝜋 arctan
(

− (𝑡−𝑎̄)
𝑏̄

)

+ 1, for some constants 𝑎̄ and 𝑏̄. We verify
the validity of their claim by fitting the equation

𝛽(𝑡) = 𝑎 + 𝑏 arctan (−(𝑡 − 𝑐)) . (17)

13 https://www.fda.gov/emergency-preparedness-and-response/
coronavirus-disease-2019-covid-19/covid-19-frequently-asked-questions,
accessed 03.09.2021.
8

Table 2
Parameter for the transmission rate curve fitting using the DELPHI model.

Parameter Estimate 95% confidence interval

𝑎 0.7485 (0.5169, 0.9802)
𝑏 0.4151 (0.2664, 0.5638)
𝑐 −1.831 (−3.271,−0.3916)

RMSE 0.0697

to the data {𝛽𝑗,𝑚∗
𝑗
}𝑁𝑗=𝑟+1. The parameters 𝑎, 𝑏, and 𝑐 are estimated

in Table 2 and the trend of {𝛽𝑗,𝑚∗
𝑗
}𝑁𝑗=𝑟+1 compared with the DELPHI

model in Fig. 8(a).
Also in their work, Eikenberry et al. [33] and Tang et al. [34] claim

that 𝛽(𝑡) follows a decreasing exponential model of the form

̄̄𝛽(𝑡) = 𝛽1 + (𝛽0 − 𝛽1)𝑒−𝑟(𝑡−𝑡0), (18)

where 𝛽0 is the initial contact rate at the initial time 𝑡0 (July 1, 2020),
𝛽1 is the minimum contact rate, and 𝑟 is the rate at which contact
decreases. We check to see if our result agrees with theirs by fitting
equation (18) to the data {𝛽 ∗}𝑁 . The parameters 𝑟, 𝛽 , 𝑖 = 0, 1 are
𝑗,𝑚𝑗 𝑗=𝑟+1 𝑖

https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-frequently-asked-questions
https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-frequently-asked-questions
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Fig. 5. Simulated (blue) and real (red) infectious values with maximum time delays 𝑟 = 90 and 𝑟 = 150 days. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Fig. 6. Simulated (blue) and real (red) recovered values with maximum time delays 𝑟 = 90 and 𝑟 = 150 days. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Table 3
Parameter for the transmission rate curve fitting using the exponential
model (18).

Parameter Estimate 95% confidence interval

𝛽0 0.2487 (0.2209, 0.2766)
𝛽1 0.1005 (0.09828, 0.1026)
𝑟 0.1438 (0.1073, 0.1802)

RMSE 0.01635

estimated in Table 3 and the trend of {𝛽𝑗,𝑚∗
𝑗
}𝑁𝑗=𝑟+1 compared with the

exponential model in Fig. 8(b).

Our result shows the exponential model fits the transmission rate
{𝛽𝑗,𝑚∗

𝑗
}𝑁𝑗=𝑟+1 better than the DELPHI v2p8 model, with a root mean

square of 0.01635. However, these two models fail to capture the
trajectory of the transmission rate for recent months. It also fails to
capture spikes in the transmission rate. For these reasons, by studying
the trajectory of the transmission rate from the month of July 2020 to
9

February 2021, we propose a mixed Gaussian model of the form

𝛽(𝑡) =
𝑀
∑

𝑗=1
𝑎𝑗 exp

(

−
(𝑥 − 𝑏𝑗 )2

𝑐2𝑗

)

, (19)

where 𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 , 𝑀 , 𝑗 = 1, 2,… ,𝑀 , are constants estimated in Table 4
below.

The trend of the transmission rate {𝛽𝑗,𝑚∗
𝑗
}𝑁𝑗=𝑟+1 is compared with

that of the proposed model (19) and the graph plotted in Fig. 9. The
proposed model (19) gives a better root mean square error of 0.0135
when compared with that of the DELPHI (17) and exponential (18)
models.

Our analysis shows that the transmission rate of the Covid-19 virus
started decreasing around the month of December 28, 2020. Several
factors might have contributed to the decline in the transmission rate of
the virus at this time. Studies show that the first dose of the vaccination
was administered on December 14, 2020. We are currently studying the
cause of the decline by comparing the trajectory of the transmission
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Fig. 7. Transmission rate 𝛽(𝑡) with maximum time delays 𝑟 = 90 and 𝑟 = 150 days.
Fig. 8. Transmission rate 𝛽𝑗,𝑚∗
𝑗

with fitted curves (17) and (18) using delay constant 𝑟 = 90 days.
Table 4
Parameter for the transmission rate curve fitting using the Gaussian
model (19).

Parameter Estimate 95% confidence interval

𝑀 4
𝑎1 4.198 (−72.64, 81.04)
𝑏1 −70.2 (−423.1, 282.7)
𝑐1 38.62 (−49.78, 127)
𝑎2 0.03928 (0.02667, 0.05189)
𝑏2 122.3 (120.8, 123.7)
𝑐2 5.661 (3.452, 7.87)
𝑎3 0.1022 (0.09784, 0.1066)
𝑏3 123.1 (95.45, 150.7)
𝑐3 252 (163.9, 340.1)
𝑎4 0.009858 (−0.000252, 0.01997)
𝑏4 196.1 (178, 214.2)
𝑐4 25.75 (−9.674, 61.18)

RMSE 0.0135

rate 𝛽(𝑡) with that of the number of vaccination records provided by
10

CDC.
Fig. 10(a)–(b) shows the trajectory of the symptomatic recovery
rate {𝜈𝑗,𝑚∗

𝑗
}𝑁𝑗=𝑟+1 using delay constants 𝑟 = 90 days and 𝑟 = 150 days,

respectively. We calculate the average of the symptomatic recovery rate
to be 0.0907 using 𝑟 = 90 days. We notice here that this average is close
to the estimated asymptomatic recovery rate 𝑟𝐼 = 1∕10.5 estimated in
Table 1. We fit the curve

𝜈̄(𝑡) =
3
∑

𝑗=1
𝑎̄𝑗 exp

(

−
(𝑥 − 𝑏̄𝑗 )2

𝑐2𝑗

)

, (20)

where 𝑎̄𝑗 , 𝑏̄𝑗 , 𝑐𝑗 , 𝑗 = 1, 2,… , 3 are constants estimated in Table 5. Our
fit suggests that after a long decline, the symptomatic recovery rate for
Covid-19 started increasing around the month of November 23, 2020
to the end of our analysis (February 25, 2021). The increase speeds up
(graph concaves up) until January 18, 2021 and starts slowing down
(graph concaves down) after that date. Studies on the cause of the
increase is ongoing.

Fig. 11 shows the graph of the symptomatic recovery rate
{𝜈 ∗}𝑁 together with the fitted curve 𝜈̄(𝑡) in (20).
𝑗,𝑚𝑗 𝑗=𝑟+2
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Fig. 9. Transmission rate 𝛽𝑗,𝑚∗
𝑗

with fitted curve (19) using delay constant 𝑟 = 90 days.

Table 5
Parameter for the symptomatic recovery rate curve fitting using the
Gaussian model (20).

Parameter Estimate 95% confidence interval

𝑎̄1 0.1211 (0.08941, 0.1527)
𝑏̄1 251.9 (130.7, 373.2)
𝑐1 132.3 (−77.91, 342.5)
𝑎̄2 0.06153 (−0.03422, 0.1573)
𝑏̄2 89.18 (45.54, 132.8)
𝑐2 50.47 (−12.58, 113.5)
𝑎̄3 0.07061 (−0.01364, 0.1549)
𝑏̄3 35.94 (17.94, 53.94)
𝑐3 34.91 (21.37, 48.44)

RMSE 0.01505

Fig. 12(a) and (b) shows the trajectory of the temporary immune
rate {𝛾𝑗,𝑚∗

𝑗
}𝑁𝑗=𝑟+1 using delay constants 𝑟 = 90 days and 𝑟 = 150 days,

respectively. The trend shows the trajectory of the temporary immune
rate behaves like that of the function 𝑡𝑛𝑒−𝑏𝑡. We calculate the average
temporary immune rate to be 0.2139 using 𝑟 = 90 days delay constant.
11
Fig. 11. Fitted recovery rates with maximum time delay 𝑟 = 90 days.

Table 6
Parameter for temporary immune curve fitting.

Parameter Estimate using 𝛾̄1 95% confidence interval

𝑎1 0.0009599 (−0.002554, 0.004474)
𝑏1 0.2142 (0.09627, 0.3322)
𝑐1 0.2036 (0.1885, 0.2187)
𝑛 3.292 (1.287, 5.296)

RMSE 0.105

We fit the curve

𝛾̄1(𝑡) = 𝑎1𝑒
−𝑏1𝑡𝑡𝑛 + 𝑐1 (21)

to the data {𝛾𝑗,𝑚∗
𝑗
}𝑁𝑗=𝑟+2 in Fig. 13. The parameters 𝑎1, 𝑏1, 𝑐1, and 𝑛 are

estimated in Table 6.
Fig. 13 shows the graph of the temporary immune rate {𝛾𝑗,𝑚∗

𝑗
}𝑁𝑗=𝑟+2

together with the fitted curves 𝛾̄𝑖(𝑡), 𝑖 = 1, 2, in (21).
Fig. 14(a)–(b) shows the trajectory of the transmission noise inten-

sity {𝜎1(𝑡𝑗 , 𝑚∗
𝑗 )}

𝑁
𝑗=𝑟+1 using delay constants 𝑟 = 90 days and 𝑟 = 150

days, respectively. We see spikes in the transmission noise intensity
during the months of June–July, November–December for the case
where 𝑟 = 90 during Thanksgiving and Christmas festive periods. This
Fig. 10. Recovery rates 𝜈(𝑡) with maximum time delays 𝑟 = 90 and 𝑟 = 150 days.
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Fig. 12. Temporary immune rate 𝛾(𝑡) with maximum time delays 𝑟 = 90 and 𝑟 = 150 days.
is the time period when the infection cases rise due to increase in the
transmission rate of COVID-19.

Fig. 15(a)–(b) shows the trajectory of the recovery noise intensity
{𝜎2(𝑡𝑗 , 𝑚∗

𝑗 )}
𝑁
𝑗=𝑟+1 using delay constants 𝑟 = 90 days and 𝑟 = 150 days,

respectively.
Fig. 16 shows the sample observation size 𝑚∗

𝑗 used at each time
𝑡𝑗 in the LLGMM procedure, as explained in Section ‘Derivation of 𝜖-
best sub-optimal state and parameter estimates’ and determined by the
computation itself. Fig. 16(a) and (b) shows the distribution of the time
delay using maximum time delay 𝑟 = 90 and 𝑟 = 150, respectively.
Notice that the algorithm seems to prefer using many past data points
as evidenced in Figs. 3, 4, 5, and 6.

The basic reproduction number 0 and the effective reproduction number
𝑒(𝑡)

In order to understand the outbreak dynamics of COVID-19, taking
into consideration vital dynamics, we study a powerful quantitative
concept that can be used to characterize the contagiousness and trans-
missibility of the infectious disease [5]. The basic reproduction number
(denoted 0), is the expected number of secondary cases produced by a
typical infectious individual in a completely susceptible population. Un-
fortunately, the number lacks the ability to explain the effects of public
health interventions [35]. Realistically, population will rarely be totally
susceptible to an infection in the real world. Some contacts will be
immune, for example, due to prior infection which has conferred life-
long immunity, or as a result of previous immunization. Therefore, not
all contacts will become infected and the average number of secondary
cases per infectious case will be lower than the basic reproduction
number 0. We quantify these effects, together with the public health
interventions for every point in time, using what we call the effec-
tive reproduction number (denoted 𝑒(𝑡)). The effective reproduction
number 𝑒(𝑡) is the expected number of secondary cases produced by
a typical infectious individual in a population where not everyone is
susceptible [2]. This number changes dynamically in response to public
health interventions. The estimated contact/transmission rate 𝛽(𝑡) and
temporary recovery rate 𝜈(𝑡) plotted in Figs. 7 and 10, respectively, are
used to estimate the reproduction numbers for the COVID-19 as follows:

Using the next generation matrix approach [36], we first obtain the
basic reproduction number 0 at the onset of the pandemic (that is, at
𝑡0). This result is now generalized to calculate the effective reproduction
number 𝑒(𝑡). Denote 𝛽(𝑡0) = 𝛽0 and 𝜈(𝑡0) = 𝜈0 as the contact rates and
symptomatic recovery rates at the onset of the pandemic, respectively.
Using the notations in van den Driessche et al. [36], the non-negative
12
Fig. 13. Fitted Temporary Immune rates 𝛾(𝑡) with maximum time delay 𝑟 = 90 days.

matrix 𝐹 representing matrix of new infection terms and the non-
singular matrix 𝑉 representing transfer of individuals in and out of a
particular compartments, are obtained as

𝐹 =
⎡

⎢

⎢

⎣

0 𝛽0𝜂 𝛽0
0 0 0
0 0 0

⎤

⎥

⎥

⎦

,

𝑉 =
⎡

⎢

⎢

⎣

𝛼 + 𝜇 0 0
−(1 − 𝑝)𝛼 𝑟𝐼 + 𝜇 0

−𝛼𝑝 0 𝜈0 + 𝜇

⎤

⎥

⎥

⎦

,

respectively. The basic reproduction number 0 is obtained by calculat-
ing the spectral radius of the next generation matrix 𝐹𝑉 −1 and obtained
as

0 = 𝛽0
𝛼

𝛼 + 𝜇

(

𝜂(1 − 𝑝)
𝑟𝐼 + 𝜇

+
𝑝

𝜈0 + 𝜇

)

. (22)

Here, 𝛼
𝛼+𝜇 is the fraction of individuals progressing from the ex-

posed class to the infectious class (probability of surviving the exposed
period and progressing to infectious class), and 1

𝑟𝐼+𝜇
and 1

𝒗(𝑡0)+𝜇
are

the mean time spent being asymptomatic and symptomatic infectious,
respectively, at the start of the epidemic. From this, in the presence of
public health interventions (such as mask wearing, 6-feet distancing,
vaccinations, et.c.), we obtain the effective reproduction number  (𝑡)
𝑒
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Fig. 14. Transmission rate noise intensity 𝜎1(𝑡) with maximum time delays 𝑟 = 90 and 𝑟 = 150 days.
Fig. 15. Recovery noise intensity 𝜎2(𝑡)) with maximum time delays 𝑟 = 90 and 𝑟 = 150 days.
Fig. 16. Sample observation size 𝑚∗
𝑗 with maximum time delays 𝑟 = 90 and 𝑟 = 150 days.
as
𝛼

(

𝜂(1 − 𝑝) 𝑝
)

13

𝑒(𝑡) = 𝛽(𝑡)
𝛼 + 𝜇 𝑟𝐼 + 𝜇

+
𝜈(𝑡) + 𝜇

, (23)
where 𝛽(𝑡) ≡ 𝛽𝑗,𝑚∗
𝑗
, 𝜈(𝑡) ≡ 𝜈𝑗,𝑚∗

𝑗
are estimated and fitted in Tables 5, 4,

and Figs. 7, 10.
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Table 7
Parameter for the effective reproduction number curve fitting.

Month Average 95% confidence interval

August 2020 0.9683 (0.8417, 1.0948)
September 2020 0.9590 (0.8460, 1.0720)
October 2020 0.9536 (0.9120, 0.9952)
November 2020 1.2468 (1.0982, 1.3954)
December 2020 1.0395 (0.9709, 1.1080)
January 2021 0.9596 (0.9298, 0.9906)
February 2021 0.7567 (0.7197, 0.7936)

Table 8
Parameter for the reproduction number curve fitting.

Parameter Estimate 95% confidence interval

𝑎1 0.7617 (0.2798, 1.244)
𝑏1 118.8 (117.5, 120.1)
𝑐1 2.512 (0.6267, 4.398)
𝑎2 5.003 (3.475, 6.532)
𝑏2 0.2489 (−2.381, 2.878)
𝑐2 6.056 (3.582, 8.53)
𝑎3 13.78 (−404.2, 431.7)
𝑏3 −726.4 (−10640, 9185)
𝑐3 557.1 (−2378, 3492)
𝑎4 −1.103 (−4.083, 1.877)
𝑏4 40.46 (−49.76, 130.7)
𝑐4 66.16 (−21.8, 154.1)

RMSE 0.3613

Information about the magnitude of the reproduction number at
ach time 𝑡 helps to understand the outbreak dynamics of an infectious
isease [5]. This result is used to analyze the outbreak dynamics of
ovid-19 cases in the United States.

Fig. 17 shows the number of new infections caused by one Covid-19
nfectious individual in a population that is not completely susceptible
ue to public health interventions. This was derived from (23), where
(𝑡) ≡ 𝛽𝑗,𝑚∗

𝑗
, 𝜈(𝑡) ≡ 𝜈𝑗,𝑚∗

𝑗
are the 𝜖-best estimates for the transmission

ate 𝛽𝑗,𝑚∗
𝑗

and temporary recovery rates 𝜈𝑗,𝑚∗
𝑗
. These rates are plotted

nd fitted in Figs. 7, 10 and Tables 5, 4, respectively. The estimated
verage effective reproduction number in the month of August 2020 to
ebruary 2021 are given in Table 7.

We see from the graph estimates that the effective basic repro-
uction number falls below 1 from January 10, 2021 to the end of
ur simulation period (February 25, 2021). Studies concerning the
ossible decline in 𝑒(𝑡) in these months are ongoing, but we suspect
he introduction of vaccines into the system might be one of the major
ontributor to the decline. We see from the plot of the effective repro-
uction number that the regions where there are spikes correspond to
egions in the plot of the transmission and recovery rates 𝛽𝑗,𝑚∗

𝑗
and 𝜈𝑗,𝑚∗

𝑗
here there are spikes. As it is well known [37,38], if 0 < 1, then

he number of infection cases converges to zero on the long run (that
s, the virus will stop spreading on the long run). Likewise, 0 > 1
eans epidemic is growing on the long run. The result above shows

hat on the average, epidemic was growing in the month of November
nd December 2020, and started to decline in the month of January and
ebruary, 2021. This is consistent with the analysis of the transmission
nd symptomatic recovery rate of the disease. As seen in Fig. 17(b), we
it the curve

̄ 𝑒(𝑡) =
4
∑

𝑗=1
𝑎𝑗 exp

(

−
( 𝑡 − 𝑏𝑗

𝑐𝑗

)2)

(24)

o the data {𝑒(𝑡𝑗 )}𝑁𝑗=𝑟+2 in Fig. 17(a). The parameters 𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 , 𝑑𝑗 ,
𝑗 = 1, 2, 3, 4, are estimated in Table 8.

Discussion and further studies

In this study, the outbreak dynamics of Covid-19 is discussed and
analyzed using a Stochastic SEIRS dynamic epidemic model with case
14

o

study of COVID-19. In the case study, the local lagged adapted gener-
alized method of moments (LLGMM) parameter identification scheme
was used to extract the exposed and susceptible population and to iden-
tify the time-dependent transmission, recovery, temporary immunity
rate, infection noise intensities, and the reproduction numbers (basic
and effective reproduction numbers) from the COVID-19 data from
March 2020 to February 2021 using time delays 𝑟 = 90 and 𝑟 = 150
days (equivalent to three and five months past data, respectively). Valu-
able information on the susceptible and exposed population, together
with the epidemiological parameters and the reproduction numbers of
COVID-19 are obtained with the help of the LLGMM scheme.

From the graph of the infection cases in Fig. 2, we see that the
trajectory of the infected population is similar to that of the estimated
exposed population. Also, the trend of the estimated susceptible popu-
lation shows that as the number of infection cases increase (decrease),
the estimated number of susceptible population decreases (increases).
Using the estimated exposed and susceptible population, we estimated
the time varying parameters in the 𝑆𝐸𝐼𝑅𝑆 epidemic model. We see
from the parameter estimates that there are spikes in the transmission
rate 𝛽(𝑡) of Covid-19 in the month of November and December 2020.
The number of infection and exposure to Covid-19 also increase in the
same months. These months correspond to festive periods in the United
States when people travel around the country. Also, these number
reduces, starting from the month of December 24, to the end of our
analysis period. These period corresponds to the period when the daily
count of total Covid-19 vaccine doses administered increases. A model
was derived to fit the time-dependent transmission rate (with a root
mean square error (RMSE) of 0.0135). The model is compared with
the work of Lingzhi Li et al. [32], Eikenberry [33] and Tang et al. [34]
and shown to fit the transmission rate better.

The recovery rate 𝜈(𝑡) of Covid-19 was estimated for the cases where
𝛼 = 1∕6, with 𝜇 = 1

80.3×365 and time delays 𝑟 = 90 and 𝑟 = 150. A
odel was derived to fit the time-dependent recovery rate (with a root
ean square error of 0.01505). Our studies show that the recovery rate

ncreases around early December 2020 to the end of our analysis period
February 25, 2021). Studies of the cause of increase is ongoing.

The temporary immune rate 𝛾(𝑡) was also estimated using time
elays 𝑟 = 90 and 𝑟 = 150. A model was derived to fit these estimates.

Finally, we estimated the basic and effective reproduction numbers
or the Covid-19 virus. These numbers are calculated using the Next
eneration Matrix approach. Our studies show that the effective re-
roduction number fluctuates around the number 1, and rises above
on the average in the month of November and December, 2020. That

s, epidemic was growing in the months of November and December,
020 during the Thanksgiving and Christmas period. The number of
nfection reduces on the average in the month of January 2021 and
ostly in February, 2021 probably due to the introduction of the
fizer and Moderna Covid-19 vaccines in the United States, which was
irst administered on December 14, 2020. We discovered that on the
verage, using latency rate 𝛼 = 1∕6, epidemic was more pronounced
n the months of November, December 2020, and January 2021 than
n other months. The growth reduces in the month of January and
ebruary. We see a decline in the transmission rate of the disease
tarting late December, 2020 to February, 2021. A possible cause of
he decline might be attributed to the Pfizer-BioNTech and Moderna
ovid-19 vaccine. We are currently studying the cause of the decline by
hecking if there is any correlation between the estimated transmission
ate and the number of vaccination in the United States. A Gaussian
odel was used to fit the reproduction number with a root mean square

f 0.3613.

Further studies on the Covid-19 outbreak is ongoing and results of
ur findings will be published as it becomes available.
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Fig. 17. Effective Reproduction number 𝑒(𝑡) using latency rate 𝛼 = 1∕6.
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