Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis

Dalia E. Gaddis, Lindsey E. Padgett, Runpei Wu, Chantel McSkimming, Veronica Romines, Angela M. Taylor, Coleen A. McNamara, Mitchell Kronenberg, Shane Crotty, Michael J. Thomas, Mary G. Sorci-Thomas, Catherine C. Hedrick

Research output: Contribution to journalArticlepeer-review

115 Scopus citations

Abstract

Regulatory T (Treg) cells contribute to the anti-inflammatory response during atherogenesis. Here we show that during atherogenesis Treg cells lose Foxp3 expression and their immunosuppressive function, leading to the conversion of a fraction of these cells into T follicular helper (Tfh) cells. We show that Tfh cells are pro-atherogenic and that their depletion reduces atherosclerosis. Mechanistically, the conversion of Treg cells to Tfh cells correlates with reduced expression of IL-2Rα and pSTAT5 levels and increased expression of IL-6Rα. In vitro, incubation of naive T cells with oxLDL prevents their differentiation into Treg cells. Furthermore, injection of lipid-free Apolipoprotein AI (ApoAI) into ApoE-/- mice reduces intracellular cholesterol levels in Treg cells and prevents their conversion into Tfh cells. Together our results suggest that ApoAI, the main protein in high-density lipoprotein particles, modulates the cellular fate of Treg cells and thus influences the immune response during atherosclerosis.

Original languageEnglish (US)
Article number1095
JournalNature communications
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2018
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis'. Together they form a unique fingerprint.

Cite this