Aquatic turning performance of painted turtles (Chrysemys picta) and functional consequences of a rigid body design

Gabriel Rivera, Angela R.V. Rivera, Erin E. Dougherty, Richard W. Blob

Research output: Contribution to journalArticlepeer-review

48 Scopus citations

Abstract

The ability to capture prey and avoid predation in aquatic habitats depends strongly on the ability to perform unsteady maneuvers (e.g. turns), which itself depends strongly on body flexibility. Two previous studies of turning performance in rigid-bodied taxa have found either high maneuverability or high agility, but not both. However, examinations of aquatic turning performance in rigid-bodied animals have had limited taxonomic scope and, as such, the effects of many body shapes and designs on aquatic maneuverability and agility have yet to be examined. Turtles represent the oldest extant lineage of rigid-bodied vertebrates and the only aquatic rigid-bodied tetrapods. We evaluated the aquatic turning performance of painted turtles, Chrysemys picta (Schneider, 1783) using the minimum length-specific radius of the turning path (R/L) and the average turning rate (ωavg) as measures of maneuverability and agility, respectively. We filmed turtles conducting forward and backward turns in an aquatic arena. Each type of turn was executed using a different pattern of limb movements. During forward turns, turtles consistently protracted the inboard forelimb and held it stationary into the flow, while continuing to move the outboard forelimb and both hindlimbs as in rectilinear swimming. The limb movements of backward turns were more complex than those of forward turns, but involved near simultaneous retraction and protraction of contralateral fore- and hindlimbs, respectively. Forward turns had a minimum R/L of 0.0018 (the second single lowest value reported from any animal) and a maximum ω avg of 247.1°. Values of R/L for backward turns (0.0091-0.0950 L) were much less variable than that of forward turns (0.0018-1.0442 L). The maneuverability of turtles is similar to that recorded previously for rigid-bodied boxfish. However, several morphological features of turtles (e.g. shell morphology and limb position) appear to increase agility relative to the body design of boxfish.

Original languageEnglish (US)
Pages (from-to)4203-4213
Number of pages11
JournalJournal of Experimental Biology
Volume209
Issue number21
DOIs
StatePublished - Nov 2006
Externally publishedYes

Keywords

  • Biomechanics
  • Locomotion
  • Maneuverability
  • Performance
  • Swimming
  • Turtle

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Physiology
  • Aquatic Science
  • Animal Science and Zoology
  • Molecular Biology
  • Insect Science

Fingerprint

Dive into the research topics of 'Aquatic turning performance of painted turtles (Chrysemys picta) and functional consequences of a rigid body design'. Together they form a unique fingerprint.

Cite this