TY - JOUR
T1 - Characterization of the regulatory functions of the equine herpesvirus 1 immediate-early gene product
AU - Smith, Richard H.
AU - Caughman, Gretchen B.
AU - O'Callaghan, Dennis J.
PY - 1992/2
Y1 - 1992/2
N2 - Use of the translation-inhibiting drug cycloheximide has indicated that the equine herpesvirus 1 (EHV-1) immediate-early (IE) gene, the sole EHV-1 IE gene, encodes a major viral regulatory protein since IE mRNA translation is a prerequisite for all further viral gene expression (W. L. Gray, R. P. Baumann, A. T. Robertson, G. B. Caughman, D. J. O'Callaghan, and J. Staczek, Virology 158:79-87, 1987). An EHV-1 IE gene expression vector (pSVIE) in combination with chimeric EHV-1 promoter-chloramphenicol acetyltransferase (CAT) reporter constructs was used in transient transfection assays to characterize the regulatory functions of the IE gene product. These experiments demonstrated that (i) the EHV-1 IE gene product is a bifunctional protein capable of both positive and negative modulation of gene expression; (ii) the IE gene product possesses an autoregulatory function which represses the IE promoter; (iii) IE autoregulation is dependent on IE promoter sequences mapping within positions -288 to +73 relative to the transcription initiation site (+1) of the IE gene; (iv) the IE gene product can independently activate the EHV-1 tk promoter (an early promoter) by as much as 60-fold; (v) two EHV-1 beta-gamma (leaky late) promoters, those of IR5 (gene 5 in the inverted repeat) and the glycoprotein D gene, demonstrate a requirement for both the IE gene product as well as a gene product encoded within the EHV-1 XbaI G fragment for significant activation; and (vi) the IE gene product is capable of activating heterologous viral promoters.
AB - Use of the translation-inhibiting drug cycloheximide has indicated that the equine herpesvirus 1 (EHV-1) immediate-early (IE) gene, the sole EHV-1 IE gene, encodes a major viral regulatory protein since IE mRNA translation is a prerequisite for all further viral gene expression (W. L. Gray, R. P. Baumann, A. T. Robertson, G. B. Caughman, D. J. O'Callaghan, and J. Staczek, Virology 158:79-87, 1987). An EHV-1 IE gene expression vector (pSVIE) in combination with chimeric EHV-1 promoter-chloramphenicol acetyltransferase (CAT) reporter constructs was used in transient transfection assays to characterize the regulatory functions of the IE gene product. These experiments demonstrated that (i) the EHV-1 IE gene product is a bifunctional protein capable of both positive and negative modulation of gene expression; (ii) the IE gene product possesses an autoregulatory function which represses the IE promoter; (iii) IE autoregulation is dependent on IE promoter sequences mapping within positions -288 to +73 relative to the transcription initiation site (+1) of the IE gene; (iv) the IE gene product can independently activate the EHV-1 tk promoter (an early promoter) by as much as 60-fold; (v) two EHV-1 beta-gamma (leaky late) promoters, those of IR5 (gene 5 in the inverted repeat) and the glycoprotein D gene, demonstrate a requirement for both the IE gene product as well as a gene product encoded within the EHV-1 XbaI G fragment for significant activation; and (vi) the IE gene product is capable of activating heterologous viral promoters.
UR - http://www.scopus.com/inward/record.url?scp=0026569553&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026569553&partnerID=8YFLogxK
M3 - Article
C2 - 1309921
AN - SCOPUS:0026569553
SN - 0022-538X
VL - 66
SP - 936
EP - 945
JO - Journal of Virology
JF - Journal of Virology
IS - 2
ER -