Comparison of in vivo and in vitro models to evaluate pulp temperature rise during exposure to a Polywave® LED light curing unit

Patricio Runnacles, Cesar Augusto Galvão Arrais, Cristiane Maucoski, Ulisses Coelho, Mario Fernando DE GOES, Frederick Allen Rueggeberg

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Objectives: To measure and compare in vivo and in vitro pulp temperature (PT) increase (ΔTEMP) over baseline, physiologic temperature using the same intact upper premolars exposed to the same Polywave® LED curing light. Methodology: After local Ethics Committee approval (#255,945), local anesthesia, rubber dam isolation, small occlusal preparations/minute pulp exposure (n=15) were performed in teeth requiring extraction for orthodontic reasons. A sterile probe of a temperature measurement system (Temperature Data Acquisition, Physitemp) was placed within the pulp chamber and the buccal surface was sequentially exposed to a LED LCU (Bluephase 20i, Ivoclar Vivadent) using the following exposure modes: 10-s low or high, 5-s Turbo, and 60-s high. Afterwards, the teeth were extracted and K-type thermocouples were placed within the pulp chamber through the original access. The teeth were attached to an assembly simulating the in vivo environment, being similarly exposed while real-time temperature (°C) was recorded. ΔTEMP values and time for temperature to reach maximum (ΔTIME) were subjected to two-way ANOVA and Bonferroni's post-hoc tests (pre-set alpha 0.05). Results: Higher ΔTEMP was observed in vitro than in vivo. No significant difference in ΔTIME was observed between test conditions. A significant, positive relationship was observed between radiant exposure and ΔTEMP for both conditions (in vivo: r2=0.917; p<0.001; in vitro: r2=0.919; p<0.001). Conclusion: Although the in vitro model overestimated in vivo PT increase, in vitro PT rise was close to in vivo values for clinically relevant exposure modes.

Original languageEnglish (US)
Article numbere20180480
JournalJournal of Applied Oral Science
Volume27
DOIs
StatePublished - 2019

Keywords

  • Bicuspids
  • Dental curing lights
  • Temperature
  • Volunteers

ASJC Scopus subject areas

  • General Dentistry

Fingerprint

Dive into the research topics of 'Comparison of in vivo and in vitro models to evaluate pulp temperature rise during exposure to a Polywave® LED light curing unit'. Together they form a unique fingerprint.

Cite this