## Abstract

Counting networks were introduced as a new class of concurrent, distributed, low contention data structures suitable for implementing shared counters. Their structure is similar to that of sorting networks. High-performance asynchronous multiprocessing requires counting networks to both have small depth and incur low contention. In order to achieve this, we relax in this work the requirement that the input width of the counting network is equal to its output width. More specifically, we present an explicit, deterministic construction of a counting network with t input width and w output width, where t≤w, t = 2^{k} and w = p2^{l}. This construction is practical and achieves depth O(lg^{2} t) which is independent from the output width w. Furthermore, by taking w to be Θ(t lg t) it incurs an amortized contention of the order O((n lg t)/t), where n is the concurrency, which improves by a logarithmic factor over all previously known practical counting networks constructions of width t.

Original language | English (US) |
---|---|

Title of host publication | Proceedings of the International Parallel Processing Symposium, IPPS |

Publisher | IEEE Comp Soc |

Pages | 380-384 |

Number of pages | 5 |

ISBN (Print) | 0818684046 |

DOIs | |

State | Published - 1998 |

Externally published | Yes |

Event | Proceedings of the 1998 12th International Parallel Processing Symposium and 9th Symposium on Parallel and Distributed Processing - Orlando, FL, USA Duration: Mar 30 1998 → Apr 3 1998 |

### Conference

Conference | Proceedings of the 1998 12th International Parallel Processing Symposium and 9th Symposium on Parallel and Distributed Processing |
---|---|

City | Orlando, FL, USA |

Period | 3/30/98 → 4/3/98 |

## ASJC Scopus subject areas

- Hardware and Architecture