Enhancement of cisplatin cytotoxicity by SAHA involves endoplasmic reticulum stress-mediated apoptosis in oral squamous cell carcinoma cells

Maiko Suzuki, Manabu Endo, Fumiaki Shinohara, Seishi Echigo, Hidemi Rikiishi

Research output: Contribution to journalArticlepeer-review

53 Scopus citations


Purpose: The histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), enhances cisplatin [cis-diammine dichloroplatinum (II)] (CDDP)-induced apoptosis in the oral squamous cell carcinoma (OSCC) cell line by complex, multifunctional mechanisms. We investigated the role of endoplasmic reticulum (ER) stress in the enhancing effect of SAHA on CDDP, compared with the ER stressor thapsigargin. Methods: We chose OSCC cell line HSC-3 to ascertain the mechanism of SAHA-enhanced cytotoxicity among various cell lines. HSC-3 cells were incubated with CDDP/SAHA for 48 h, followed by the assessment of cell chemosensitivity to CDDP with MTT and TUNEL assays. Western blot analysis was used to detect the expressions of ER-related molecules, and flow cytometry was used to monitor caspase activity. Results: Treatment with CDDP/SAHA potently induced apoptosis in HSC-3 cells with a significant increase in caspase-4 and -12 functions. For example, 60% of cells became apoptotic after 48 h of treatment with CDDP/SAHA. In addition, SAHA alone rapidly induced sustained phosphorylation of eukaryotic translation initiation factor-2 (eIF2)α, which is up-regulated during ER stress. Inhibition of ER stress by salubrinal, an inhibitor of eIF2α dephosphorylation, abrogated SAHA's enhancement of CDDP cytotoxicity. Levels of phospho-Akt are decreased in SAHA-treated cells, and this is in turn associated with increased activity of protein phosphatase 1 (PP1) by SAHA, the phosphatase upstream of Akt. Conclusion: These data indicate that up-regulation of specific-ER stress-associated events is an integral part of the mechanism by which SAHA enhances CDDP-induced apoptosis, and PP1 up-regulation followed by Akt dephosphorylation plays an important role in SAHA-enhanced CDDP apoptosis.

Original languageEnglish (US)
Pages (from-to)1115-1122
Number of pages8
JournalCancer Chemotherapy and Pharmacology
Issue number6
StatePublished - Nov 2009
Externally publishedYes


  • Apoptosis
  • Cisplatin
  • Endoplasmic reticulum stress
  • Oral squamous cell carcinoma
  • Suberoylanilide hydroxamic acid

ASJC Scopus subject areas

  • Oncology
  • Toxicology
  • Pharmacology
  • Cancer Research
  • Pharmacology (medical)


Dive into the research topics of 'Enhancement of cisplatin cytotoxicity by SAHA involves endoplasmic reticulum stress-mediated apoptosis in oral squamous cell carcinoma cells'. Together they form a unique fingerprint.

Cite this