TY - JOUR
T1 - Improved rule-out diagnostic gain with a combined aortic dissection detection risk score and D-dimer Bayesian decision support scheme
AU - Baez, Amado Alejandro
AU - Cochon, Laila
N1 - Publisher Copyright:
© 2016 Elsevier Inc.
PY - 2017/2/1
Y1 - 2017/2/1
N2 - The objective of this study was to develop a Bayesian clinical decision support mathematical model that can assist in assessing a diagnostic utility integrating the aortic dissection detection risk score (ADD-RS) combined with the diagnostic quality of D-dimer testing. Methods Our method uses the Bayes nomogram. Pretest probability scoring for the ADD-RS was obtained using their derived precalculated effects models. Sensitivity, specificity, and positive and negative likelihood ratios (LRs) for D-dimer testing were obtained by meta-analysis. Posttest probability was obtained from Bayesian statistical modeling integrating low, intermediate, and high pretest for the ADD-RS and LRs for D-dimer testing. Relative (RDG) and absolute (AADG) diagnostic gains were calculated. Results Pool meta-analysis of D-dimer data demonstrated a sensitivity of 0.97 (95% confidence interval [CI], 0.94-0.99), specificity of 0.56 (95% CI, 0.51-0.60), negative LR of 0.06 (95% CI, 0.03-0.12), and positive LR of 2.43 (95% CI, 1.89-3.12). Bayesian modeling for negative LRs demonstrated posttest probabilities scores of 0.24% for low risk (AADG = 4.06% and RDG = 94.42%), 3.4% for intermediate risk (AADG = 33.1% and RDG = 90.68%), and 7.9% for high risk (AADG = 51.3% and RDG = 86.65%). Conclusion The integration of the ADD-RS and D-dimer testing in a decision support scheme suggested rule-out diagnostic value and gains, mostly evidenced in the AADD-RS low and intermediate pretest probability categories. We propose further evaluating the use of this decision support scheme in a prospective model and as a potential triage tool for aortic dissection.
AB - The objective of this study was to develop a Bayesian clinical decision support mathematical model that can assist in assessing a diagnostic utility integrating the aortic dissection detection risk score (ADD-RS) combined with the diagnostic quality of D-dimer testing. Methods Our method uses the Bayes nomogram. Pretest probability scoring for the ADD-RS was obtained using their derived precalculated effects models. Sensitivity, specificity, and positive and negative likelihood ratios (LRs) for D-dimer testing were obtained by meta-analysis. Posttest probability was obtained from Bayesian statistical modeling integrating low, intermediate, and high pretest for the ADD-RS and LRs for D-dimer testing. Relative (RDG) and absolute (AADG) diagnostic gains were calculated. Results Pool meta-analysis of D-dimer data demonstrated a sensitivity of 0.97 (95% confidence interval [CI], 0.94-0.99), specificity of 0.56 (95% CI, 0.51-0.60), negative LR of 0.06 (95% CI, 0.03-0.12), and positive LR of 2.43 (95% CI, 1.89-3.12). Bayesian modeling for negative LRs demonstrated posttest probabilities scores of 0.24% for low risk (AADG = 4.06% and RDG = 94.42%), 3.4% for intermediate risk (AADG = 33.1% and RDG = 90.68%), and 7.9% for high risk (AADG = 51.3% and RDG = 86.65%). Conclusion The integration of the ADD-RS and D-dimer testing in a decision support scheme suggested rule-out diagnostic value and gains, mostly evidenced in the AADD-RS low and intermediate pretest probability categories. We propose further evaluating the use of this decision support scheme in a prospective model and as a potential triage tool for aortic dissection.
KW - Acute Care Diagnostic Collaboration
KW - Aortic dissection
KW - Bayesian model
KW - D-dimer
UR - http://www.scopus.com/inward/record.url?scp=85006096624&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85006096624&partnerID=8YFLogxK
U2 - 10.1016/j.jcrc.2016.08.007
DO - 10.1016/j.jcrc.2016.08.007
M3 - Article
C2 - 27632799
AN - SCOPUS:85006096624
SN - 0883-9441
VL - 37
SP - 56
EP - 59
JO - Journal of Critical Care
JF - Journal of Critical Care
ER -