Matrix stiffening by self-mineralizable guided bone regeneration

Jing Li, Jian Fei Yan, Qian Qian Wan, Min Juan Shen, Yu Xuan Ma, Jun Ting Gu, Peng Gao, Xiao Yi Tang, Fan Yu, Ji Hua Chen, Franklin R. Tay, Kai Jiao, Li Na Niu

Research output: Contribution to journalArticlepeer-review

28 Scopus citations


Collagen membranes produced in vitro with different degrees of intrafibrillar mineralization are potentially useful for guided bone regeneration (GBR). However, highly-mineralized collagen membranes are brittle and difficult for clinical manipulation. The present study aimed at developing an intrafibrillar self-mineralization strategy for GBR membrane by covalently conjugating high-molecular weight polyacrylic acid (HPAA) on Bio-Gide® membranes (BG). The properties of the self-mineralizable membranes (HBG) and their potential to induce bone regeneration were investigated. The HBG underwent the progressive intrafibrillar mineralization as well as the increase in stiffness after immersed in supersaturated calcium phosphate solution, osteogenic medium, or after being implanted into a murine calvarial bone defect. The HBG promoted in-situ bone regeneration via stimulating osteogenic differentiation of mesenchymal stromal cells (MSCs). Hippo signaling was inhibited when MSCs were cultured on the self-mineralized HBG, and in HBG-promoted MSC osteogenesis during in-situ bone regeneration. This resulted in translocation of the transcription co-activators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) into the nucleus to induce transcription of genes promoting osteogenic differentiation of MSCs. Taken together, these findings indicated that HBG possessed the ability to self-mineralize in situ via intrafibrillar mineralization. The increase in stiffness of the extracellular matrix expedited in-situ bone regeneration by inactivating the Hippo-YAP/TAZ signaling cascade. Statement of significance: Guided bone regeneration (GBR) membranes made of naturally derived collagen have been widely used in the bone defect restoration. However, application of collagen GBR membranes run into the bottleneck with the challenges like insufficient stress strength, relatively poor dimensional stability and unsatisfactory osteoinductivity. This study develops a modified GBR membrane that can undergo progressive self-mineralization and matrix stiffening in situ. Increase in extracellular matrix stiffness provides the mechanical cues required for MSCs differentiation and expedites in-situ bone regeneration by inactivating the Hippo-YAP/TAZ signaling cascade.

Original languageEnglish (US)
Pages (from-to)112-125
Number of pages14
JournalActa biomaterialia
StatePublished - Apr 15 2021


  • Collagen membranes
  • Guided bone regeneration
  • In-situ mineralization
  • Matrix stiffness mechanotransduction

ASJC Scopus subject areas

  • Biotechnology
  • Biomaterials
  • Biochemistry
  • Biomedical Engineering
  • Molecular Biology


Dive into the research topics of 'Matrix stiffening by self-mineralizable guided bone regeneration'. Together they form a unique fingerprint.

Cite this