MicroRNA signature of the human developing pancreas

Samuel Rosero, Valia Bravo-Egana, Zhijie Jiang, Sawsan Khuri, Nicholas Tsinoremas, Dagmar Klein, Eduardo Sabates, Mayrin Correa-Medina, Camillo Ricordi, Juan Domínguez-Bendala, Juan Diez, Ricardo L. Pastori

Research output: Contribution to journalArticlepeer-review

54 Scopus citations

Abstract

Background: MicroRNAs are non-coding RNAs that regulate gene expression including differentiation and development by either inhibiting translation or inducing target degradation. The aim of this study is to determine the microRNA expression signature during human pancreatic development and to identify potential microRNA gene targets calculating correlations between the signature microRNAs and their corresponding mRNA targets, predicted by bioinformatics, in genome-wide RNA microarray study.Results: The microRNA signature of human fetal pancreatic samples 10-22 weeks of gestational age (wga), was obtained by PCR-based high throughput screening with Taqman Low Density Arrays. This method led to identification of 212 microRNAs. The microRNAs were classified in 3 groups: Group number I contains 4 microRNAs with the increasing profile; II, 35 microRNAs with decreasing profile and III with 173 microRNAs, which remain unchanged. We calculated Pearson correlations between the expression profile of microRNAs and target mRNAs, predicted by TargetScan 5.1 and miRBase altgorithms, using genome-wide mRNA expression data. Group I correlated with the decreasing expression of 142 target mRNAs and Group II with the increasing expression of 876 target mRNAs. Most microRNAs correlate with multiple targets, just as mRNAs are targeted by multiple microRNAs. Among the identified targets are the genes and transcription factors known to play an essential role in pancreatic development.Conclusions: We have determined specific groups of microRNAs in human fetal pancreas that change the degree of their expression throughout the development. A negative correlative analysis suggests an intertwined network of microRNAs and mRNAs collaborating with each other. This study provides information leading to potential two-way level of combinatorial control regulating gene expression through microRNAs targeting multiple mRNAs and, conversely, target mRNAs regulated in parallel by other microRNAs as well. This study may further the understanding of gene expression regulation in the human developing pancreas.

Original languageEnglish (US)
Article number509
JournalBMC Genomics
Volume11
Issue number1
DOIs
StatePublished - Sep 22 2010
Externally publishedYes

ASJC Scopus subject areas

  • Biotechnology
  • Genetics

Fingerprint

Dive into the research topics of 'MicroRNA signature of the human developing pancreas'. Together they form a unique fingerprint.

Cite this