Modeling Dynamical Systems with Neural Hybrid System Framework via Maximum Entropy Approach

Yejiang Yang, Weiming Xiang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, a data-driven neural hybrid system modeling framework via the Maximum Entropy partitioning approach is proposed for complex dynamical system modeling such as human motion dynamics. The sampled data collected from the system is partitioned into segmented data sets using the Maximum Entropy approach, and the mode transition logic is then defined. Then, as the local dynamical description for their corresponding partitions, a collection of small-scale neural networks is trained. Following a neural hybrid system model of the system, a set-valued reachability analysis with low computation cost is provided based on interval analysis and a split and combined process to demonstrate the benefits of our approach in computationally expensive tasks. Finally, a numerical examples of the limit cycle and a human behavior modeling example are provided to demonstrate the effectiveness and efficiency of the developed methods.

Original languageEnglish (US)
Title of host publication2023 American Control Conference, ACC 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3907-3912
Number of pages6
ISBN (Electronic)9798350328066
DOIs
StatePublished - 2023
Event2023 American Control Conference, ACC 2023 - San Diego, United States
Duration: May 31 2023Jun 2 2023

Publication series

NameProceedings of the American Control Conference
Volume2023-May
ISSN (Print)0743-1619

Conference

Conference2023 American Control Conference, ACC 2023
Country/TerritoryUnited States
CitySan Diego
Period5/31/236/2/23

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Modeling Dynamical Systems with Neural Hybrid System Framework via Maximum Entropy Approach'. Together they form a unique fingerprint.

Cite this