Nanoleakage at the dentin adhesive interface vs microtensile bond strength.

S. J. Paul, D. A. Welter, M. Ghazi, D. Pashley

Research output: Contribution to journalArticlepeer-review

103 Scopus citations


Excessive etching of the dentin may decrease bond strength because the adhesive may fail to completely infiltrate to the base of the over-etched demineralized collagen network. The purpose of the present study was to evaluate the influence of increasing etching times on the microtensile bond strength of Single Bond and the leakage of silver ions within the hybrid layer. After etching occlusal dentin for 15, 30, or 60 seconds with 35% phosphoric acid gel, Single Bond was applied and cured for 10 seconds. Z100 was added and cured for 60 seconds. After 24 hours of water immersion, the teeth were sectioned into slices 0.7 mm thick, and hour-glass-shaped specimens were prepared. Alternate slices were either dried for 30 minutes in air, kept wet, or they were coated with fingernail varnish except for 0.5 mm around the bonded area. Only the varnished samples were then stained with 50% AgNO3. Microtensile bond strength was tested using a Vitrodyne V-1000 universal tester. The samples of the stained group were embedded in self-curing PMMA and polished. All samples were observed with an SEM. Nanoleakage of silver ions was measured by exposure to laser ablation with an inductively connected plasma mass spectrometer and by electron dispersive elemental analysis. Increasing etching times seemed to have a negligible effect on bond strength of Single Bond, producing an average value of ca 38 MPa. However, the silver uptake increased upon prolonged etching times. Short-term results suggest that overetching has no detrimental effect on bond strength values of Single Bond. However, increased silver uptake, depending on the etching time, raises concern about the long-term stability of the bond.

Original languageEnglish (US)
Pages (from-to)181-188
Number of pages8
JournalOperative dentistry
Issue number3
StatePublished - 1999

ASJC Scopus subject areas

  • Dentistry(all)


Dive into the research topics of 'Nanoleakage at the dentin adhesive interface vs microtensile bond strength.'. Together they form a unique fingerprint.

Cite this