Abstract
A population is considered stationary if the growth rate is zero and the age structure is constant. It thus follows that a population is considered non-stationary if either its growth rate is nonzero and/or its age structure is non-constant. We propose three properties that are related to the stationary population identity (SPI) of population biology by connecting it with stationary populations and non-stationary populations which are approaching stationarity. One of these important properties is that SPI can be applied to partition a population into stationary and non-stationary components. These properties provide deeper insights into cohort formation in real-world populations and the length of the duration for which stationary and non-stationary conditions hold. The new concepts are based on the time gap between the occurrence of stationary and non-stationary populations within the SPI framework that we refer to as Oscillatory SPI and the Amplitude of SPI.
Original language | English (US) |
---|---|
Pages (from-to) | 4233-4250 |
Number of pages | 18 |
Journal | Bulletin of Mathematical Biology |
Volume | 81 |
Issue number | 10 |
DOIs | |
State | Published - Oct 1 2019 |
Keywords
- Functional knots
- Oscillatory properties
- PDEs
- Stationary population identity
ASJC Scopus subject areas
- Neuroscience(all)
- Immunology
- Mathematics(all)
- Biochemistry, Genetics and Molecular Biology(all)
- Environmental Science(all)
- Pharmacology
- Agricultural and Biological Sciences(all)
- Computational Theory and Mathematics