TY - JOUR
T1 - Polymer conjugation optimizes EDTA as a calcium-chelating agent that exclusively removes extrafibrillar minerals from mineralized collagen
AU - Guo, Jing mei
AU - Makvandi, Pooyan
AU - Wei, Chin chuan
AU - Chen, Ji hua
AU - Xu, Hua kun
AU - Breschi, Lorenzo
AU - Pashley, David H.
AU - Huang, Cui
AU - Niu, Li na
AU - Tay, Franklin Chi Meng
N1 - Funding Information:
This work was supported by grant from the National Key R&D Program of China (2017YFC0840100 and 2017YFC0840109), National Nature Science Foundation of China (81722015, 81870805 and 81720108011), and by the National Science Foundation grant NSF-CHE #1608484 to CW.
Publisher Copyright:
© 2019
PY - 2019/5
Y1 - 2019/5
N2 - During development of mineralized collagenous tissues, intrafibrillar mineralization is achieved by preventing mineralization precursor inhibitors that are larger than 40 kDa from entering the collagen fibrils. Such a property is incorporated in the design of a calcium chelator for dentin bonding in the etch-and-rinse technique that selectively demineralizes extrafibrillar apatite while leaving the intrafibrillar minerals intact. This strategy prevents complete demineralization of collagen fibrils, avoids collapse of collagen that blocks resin infiltration after air-drying, and protects the completely demineralized fibrils from bacteria colonization and degradation by endogenous proteases after resin bonding. In the present study, a water-soluble glycol chitosan-EDTA (GCE)conditioner was synthesized by conjugation of EDTA, an effective calcium chelator, to high molecular weight glycol chitosan, which exhibits weak chelation property. The GCE conjugate was purified, characterized by FTIR, 1H NMR, isothermal titration calorimetry and ICP-AES, and subjected to size exclusion dialysis to recover molecules that are >40 kDa. The optimal concentration and application time for etching dentin were determined by bond strength testing to ensure that the dentin bonding results were comparable to phosphoric acid etching, and maintained equivalent bond strength after air-drying of the conditioned collagen matrix. Extrafibrillar demineralization was validated with transmission electron microscopy. Inhibition of endogenous dentin proteases was confirmed using in-situ zymography. The water-soluble GCE dentin conditioner was non-cytotoxic and possessed antibacterial activities against planktonic and single-species biofilms, supporting its ongoing development as a dentin conditioner with air-drying, anti-proteolytic and antibacterial properties to enhance the durability of bonds created using the etch-and-rinse bonding technique. Statement of Significance: The current state-of-the-art techniques for filling decayed teeth with plastic tooth-colored materials require conditioning the mineralized, biofilm-covered, decayed dentin with acids or acid resin monomers to create a surface layer of completely- or partially-demineralized collagen matrix for the infiltration of adhesive resin monomers. Nevertheless, fillings prepared using these strategies are not as durable as consumers have anticipated. Conjugation of polymeric glycol chitosan with EDTA produces a new conditioner for dentin bonding that demineralizes only extrafibrillar dentin, reduces endogenous protease activities and kills biofilm bacteria. The high molecular weight glycol chitosan-EDTA is non-cytotoxic to the key regenerative players within the dentin-pulp complex. This advance permits dry bonding and the use of hydrophobic resins.
AB - During development of mineralized collagenous tissues, intrafibrillar mineralization is achieved by preventing mineralization precursor inhibitors that are larger than 40 kDa from entering the collagen fibrils. Such a property is incorporated in the design of a calcium chelator for dentin bonding in the etch-and-rinse technique that selectively demineralizes extrafibrillar apatite while leaving the intrafibrillar minerals intact. This strategy prevents complete demineralization of collagen fibrils, avoids collapse of collagen that blocks resin infiltration after air-drying, and protects the completely demineralized fibrils from bacteria colonization and degradation by endogenous proteases after resin bonding. In the present study, a water-soluble glycol chitosan-EDTA (GCE)conditioner was synthesized by conjugation of EDTA, an effective calcium chelator, to high molecular weight glycol chitosan, which exhibits weak chelation property. The GCE conjugate was purified, characterized by FTIR, 1H NMR, isothermal titration calorimetry and ICP-AES, and subjected to size exclusion dialysis to recover molecules that are >40 kDa. The optimal concentration and application time for etching dentin were determined by bond strength testing to ensure that the dentin bonding results were comparable to phosphoric acid etching, and maintained equivalent bond strength after air-drying of the conditioned collagen matrix. Extrafibrillar demineralization was validated with transmission electron microscopy. Inhibition of endogenous dentin proteases was confirmed using in-situ zymography. The water-soluble GCE dentin conditioner was non-cytotoxic and possessed antibacterial activities against planktonic and single-species biofilms, supporting its ongoing development as a dentin conditioner with air-drying, anti-proteolytic and antibacterial properties to enhance the durability of bonds created using the etch-and-rinse bonding technique. Statement of Significance: The current state-of-the-art techniques for filling decayed teeth with plastic tooth-colored materials require conditioning the mineralized, biofilm-covered, decayed dentin with acids or acid resin monomers to create a surface layer of completely- or partially-demineralized collagen matrix for the infiltration of adhesive resin monomers. Nevertheless, fillings prepared using these strategies are not as durable as consumers have anticipated. Conjugation of polymeric glycol chitosan with EDTA produces a new conditioner for dentin bonding that demineralizes only extrafibrillar dentin, reduces endogenous protease activities and kills biofilm bacteria. The high molecular weight glycol chitosan-EDTA is non-cytotoxic to the key regenerative players within the dentin-pulp complex. This advance permits dry bonding and the use of hydrophobic resins.
KW - Anti-collagen degradation
KW - Antibacterial
KW - Calcium chelation
KW - Conjugation
KW - Extrafibrillar demineralization
KW - Glycol chitosan-EDTA
UR - http://www.scopus.com/inward/record.url?scp=85063883086&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85063883086&partnerID=8YFLogxK
U2 - 10.1016/j.actbio.2019.04.011
DO - 10.1016/j.actbio.2019.04.011
M3 - Article
C2 - 30953801
AN - SCOPUS:85063883086
SN - 1742-7061
VL - 90
SP - 424
EP - 440
JO - Acta Biomaterialia
JF - Acta Biomaterialia
ER -