Serine/Threonine Protein Phosphatases 1 and 2A in Lung Endothelial Barrier Regulation

Rahul S. Patil, Anita Kovacs-Kasa, Boris A Gorshkov, David J.R. Fulton, Yunchao Su, Robert K. Batori, Alexander D. Verin

Research output: Contribution to journalReview articlepeer-review

Abstract

Vascular barrier dysfunction is characterized by increased permeability and inflammation of endothelial cells (ECs), which are prominent features of acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and sepsis, and a major complication of the SARS-CoV-2 infection and COVID-19. Functional impairment of the EC barrier and accompanying inflammation arises due to microbial toxins and from white blood cells of the lung as part of a defensive action against pathogens, ischemia-reperfusion or blood product transfusions, and aspiration syndromes-based injury. A loss of barrier function results in the excessive movement of fluid and macromolecules from the vasculature into the interstitium and alveolae resulting in pulmonary edema and collapse of the architecture and function of the lungs, and eventually culminates in respiratory failure. Therefore, EC barrier integrity, which is heavily dependent on cytoskeletal elements (mainly actin filaments, microtubules (MTs), cell-matrix focal adhesions, and intercellular junctions) to maintain cellular contacts, is a critical requirement for the preservation of lung function. EC cytoskeletal remodeling is regulated, at least in part, by Ser/Thr phosphorylation/dephosphorylation of key cytoskeletal proteins. While a large body of literature describes the role of phosphorylation of cytoskeletal proteins on Ser/Thr residues in the context of EC barrier regulation, the role of Ser/Thr dephosphorylation catalyzed by Ser/Thr protein phosphatases (PPases) in EC barrier regulation is less documented. Ser/Thr PPases have been proposed to act as a counter-regulatory mechanism that preserves the EC barrier and opposes EC contraction. Despite the importance of PPases, our knowledge of the catalytic and regulatory subunits involved, as well as their cellular targets, is limited and under-appreciated. Therefore, the goal of this review is to discuss the role of Ser/Thr PPases in the regulation of lung EC cytoskeleton and permeability with special emphasis on the role of protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) as major mammalian Ser/Thr PPases. Importantly, we integrate the role of PPases with the structural dynamics of the cytoskeleton and signaling cascades that regulate endothelial cell permeability and inflammation.

Original languageEnglish (US)
Article number1638
JournalBiomedicines
Volume11
Issue number6
DOIs
StatePublished - Jun 2023

Keywords

  • Ser/Thr protein phosphatase 1
  • Ser/Thr protein phosphatase 2A
  • cytoskeleton
  • endothelial cells
  • inflammation
  • permeability
  • phosphorylation

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Serine/Threonine Protein Phosphatases 1 and 2A in Lung Endothelial Barrier Regulation'. Together they form a unique fingerprint.

Cite this