Spontaneous development of intestinal and colonic atrophy and inflammation in the carnitine-deficient jvs (OCTN2-/-) mice

Prem S. Shekhawat, Sonne R. Srinivas, Dietrich Matern, Michael J. Bennett, Richard Boriack, Varghese George, Hongyan Xu, Puttur D. Prasad, Penny Roon, Vadivel Ganapathy

Research output: Contribution to journalArticlepeer-review

63 Scopus citations


Carnitine is essential for transport of long-chain fatty acids into mitochondria for their subsequent β-oxidation, but its role in the gastrointestinal tract has not been well described. Recently several genetic epidemiologic studies have shown strong association between mutations in carnitine transporter genes OCTN1 and OCTN2 and a propensity to develop Crohn's disease. This study aims to investigate role of carnitine and β-oxidation in the GI tract. We have studied the gastrointestinal tract effects of carnitine deficiency in a mouse model with loss-of-function mutation in the OCTN2 carnitine transporter. juvenile visceral steatosis (OCTN2-/-) mouse spontaneously develops intestinal villous atrophy, breakdown and inflammation with intense lymphocytic and macrophage infiltration, leading to ulcer formation and gut perforation. There is increased apoptosis of jvs (OCTN2-/-) gut epithelial cells. We observed an up-regulation of heat shock factor-1 (HSF-1) and several heat shock proteins (HSPs) which are known to regulate OCTN2 gene expression. Intestinal and colonic epithelial cells in wild type mice showed high expression and activity of the enzymes of β-oxidation pathway. These studies provide evidence of an obligatory role for carnitine in the maintenance of normal intestinal and colonic structure and morphology. Fatty acid oxidation, a metabolic pathway regulated by carnitine-dependent entry of long-chain fatty acids into mitochondrial matrix, is likely essential for normal gut function. Our studies suggest that carnitine supplementation, as a means of boosting fatty acid oxidation, may be therapeutically beneficial in patients with inflammation of the intestinal tract.

Original languageEnglish (US)
Pages (from-to)315-324
Number of pages10
JournalMolecular Genetics and Metabolism
Issue number4
StatePublished - Dec 2007


  • Carnitine
  • Crohn's disease
  • Fatty acid β-oxidation
  • Inflammation
  • NEC

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Molecular Biology
  • Genetics
  • Endocrinology


Dive into the research topics of 'Spontaneous development of intestinal and colonic atrophy and inflammation in the carnitine-deficient jvs (OCTN2-/-) mice'. Together they form a unique fingerprint.

Cite this