Synthesis and characterization of silver nanoparticles decorated polydopamine coated hexagonal boron nitride and its effect on wound healing

Tuba Tarhan, Özlem Şen, Melis Emanet Ciofani, Deniz Yılmaz, Mustafa Çulha

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Background: Wound healing is an essential physiological process involving many cell types and their products acting in a marvellous harmony to repair damaged tissues. During the healing process, cellular proliferation and extracellular matrix remodelling stages could be interrupted by undesired factors including microorganisms and altered metabolic activities. In such a case, the process requires some external stimulants to accelerate or remediate the healing stages. Methods: In this study, we report a multifunctional wound healing stimulating agent. In this context, hexagonal boron nitride (hBN) nanoparticles, silver nanoparticles (AgNPs) and polydopamine(pdopa) were used through mussel-inspired chemistry of dopamine to obtain pdopa coated hBN (hBN@pdopa) and AgNPs decorated hBN@pdopa (hBN@pdopa-AgNPs). These two nanostructures were investigated to observe stages of healing. Results: AgNPs were chosen for inflammation reduction and hBN for induced cell proliferation and migration. In in vitro experiments, firstly, high cellular uptake capacity and biocompatibility of hBN@pdopa and hBN@pdopa-AgNPs were evaluated. They were also tested for their reaction against increased concentration of reactive oxygen species (ROS) in injured cells. Finally, their effect on cellular migration, intracellular tube formation and F-actin organization were monitored by light and confocal microscopy, respectively. Conclusion: The results clearly indicate that the hBN@pdopa-AgNPs significantly decrease ROS production, promote wound closure, and reorganize tube formation in cells.

Original languageEnglish (US)
Article number126774
JournalJournal of Trace Elements in Medicine and Biology
Volume67
DOIs
StatePublished - Sep 2021
Externally publishedYes

Keywords

  • Angiogenesis
  • Biocompatibility
  • Hexagonal boron nitrides
  • Polydopamine
  • Silver nanoparticles
  • Wound healing

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Medicine
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Synthesis and characterization of silver nanoparticles decorated polydopamine coated hexagonal boron nitride and its effect on wound healing'. Together they form a unique fingerprint.

Cite this