Temporary disruption of the plasma membrane is required for c-fos expression in response to mechanical stress

Kenneth P. Grembowicz, Diane Sprague, Paul L. McNeil

Research output: Contribution to journalArticlepeer-review

76 Scopus citations


Mechanically stressed cells display increased levels of fos message and protein. Although the intracellular signaling pathways responsible for FOS induction have been extensively characterized, we still do not understand the nature of the primary cell mechanotransduction event responsible for converting an externally acting mechanical stressor into an intracellular signal cascade. We now report that plasma membrane disruption (PMD) is quantitatively correlated on a cell-by-cell basis with fos protein levels expressed in mechanically injured monolayers. When the population of PMD- affected cells in injured monolayers was selectively prevented from responding to the injury, the fos response was completely ablated, demonstrating that PMD is a requisite event. This PMD-dependent expression of fos protein did not require cell exposure to cues inherent in release from cell-cell contact inhibition or presented by denuded substratum, because it also occurred in subconfluent monolayers. Fos expression also could not be explained by factors released through PMD, because cell injury conditioned medium failed to elicit fos expression. Translocation of the transcription factor NF-κB into the nucleus may also be regulated by PMD, based on a quantitative correlation similar to that found with fos. We propose that PMD, by allowing a flux of normally impermeant molecules across the plasma membrane, mediates a previously unrecognized form of cell mechanotransduction. PMD may thereby lead to cell growth or hypertrophy responses such as those that are present normally in mechanically stressed skeletal muscle and pathologically in the cardiovascular system.

Original languageEnglish (US)
Pages (from-to)1247-1257
Number of pages11
JournalMolecular Biology of the Cell
Issue number4
StatePublished - Apr 1999
Externally publishedYes

ASJC Scopus subject areas

  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Temporary disruption of the plasma membrane is required for c-fos expression in response to mechanical stress'. Together they form a unique fingerprint.

Cite this