TY - JOUR
T1 - The cytoplasmic tail of FPC antagonizes the full-length protein in the regulation of mTOR pathway
AU - Wang, Shixuan
AU - Wu, Maoqing
AU - Yao, Gang
AU - Zhang, Jingjing
AU - Zhou, Jing
PY - 2014/5/22
Y1 - 2014/5/22
N2 - FPC (fibrocystin or polyductin) is a single transmembrane receptor-like protein, responsible for the human autosomal recessive polycystic kidney disease (ARPKD). It was recently proposed that FPC undergoes a Notch-like cleavage and subsequently the cleaved carboxy(C)-terminal fragment translocates to the nucleus. To study the functions of the isolated C-tail, we expressed the intracellular domain of human FPC (hICD) in renal epithelial cells. By 3-dimensional (3D) tubulogenesis assay, we found that in contrast to tubule-like structures formed from control cells, hICD-expressing cells exclusively formed cyst-like structures. By western blotting, we showed that the Akt/mTOR pathway, indicated by increased phosphorylation of Akt at serine 473 and S6 kinase 1 at threonine 389, was constitutively activated in hICD-expressing cells, similar to that in FPC knockdown cells and ARPKD kidneys. Moreover, application of mTOR inhibitor rapamycin reduced the size of the cyst-like structures formed by hICD-expressing cells. Application of either LY294002 or wortmannin inhibited the activation of both S6K1 and Akt. Expression of full-length FPC inhibited the activation of S6 and S6 kinase whereas co-expression of hICD with full-length FPC antagonized the inhibitory effect of full-length FPC on mTOR. Taken together, we propose that FPC modulates the PI3K/Akt/mTOR pathway and the cleaved C-tail regulates the function of the full-length protein.
AB - FPC (fibrocystin or polyductin) is a single transmembrane receptor-like protein, responsible for the human autosomal recessive polycystic kidney disease (ARPKD). It was recently proposed that FPC undergoes a Notch-like cleavage and subsequently the cleaved carboxy(C)-terminal fragment translocates to the nucleus. To study the functions of the isolated C-tail, we expressed the intracellular domain of human FPC (hICD) in renal epithelial cells. By 3-dimensional (3D) tubulogenesis assay, we found that in contrast to tubule-like structures formed from control cells, hICD-expressing cells exclusively formed cyst-like structures. By western blotting, we showed that the Akt/mTOR pathway, indicated by increased phosphorylation of Akt at serine 473 and S6 kinase 1 at threonine 389, was constitutively activated in hICD-expressing cells, similar to that in FPC knockdown cells and ARPKD kidneys. Moreover, application of mTOR inhibitor rapamycin reduced the size of the cyst-like structures formed by hICD-expressing cells. Application of either LY294002 or wortmannin inhibited the activation of both S6K1 and Akt. Expression of full-length FPC inhibited the activation of S6 and S6 kinase whereas co-expression of hICD with full-length FPC antagonized the inhibitory effect of full-length FPC on mTOR. Taken together, we propose that FPC modulates the PI3K/Akt/mTOR pathway and the cleaved C-tail regulates the function of the full-length protein.
UR - http://www.scopus.com/inward/record.url?scp=84901354680&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84901354680&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0095630
DO - 10.1371/journal.pone.0095630
M3 - Article
C2 - 24851866
AN - SCOPUS:84901354680
SN - 1932-6203
VL - 9
JO - PLoS One
JF - PLoS One
IS - 5
M1 - e95630
ER -